Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 14 |
Descriptor
Natural Language Processing | 14 |
Teaching Methods | 14 |
Intelligent Tutoring Systems | 9 |
Prediction | 9 |
Computer Software | 8 |
Data Analysis | 8 |
Feedback (Response) | 8 |
Scores | 8 |
Programming | 7 |
Classification | 6 |
Eye Movements | 6 |
More ▼ |
Source
International Educational… | 14 |
Author
Publication Type
Speeches/Meeting Papers | 9 |
Reports - Research | 8 |
Collected Works - Proceedings | 5 |
Reports - Evaluative | 1 |
Education Level
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Phung, Tung; Cambronero, José; Gulwani, Sumit; Kohn, Tobias; Majumdarm, Rupak; Singla, Adish; Soares, Gustavo – International Educational Data Mining Society, 2023
Large language models (LLMs), such as Codex, hold great promise in enhancing programming education by automatically generating feedback for students. We investigate using LLMs to generate feedback for fixing syntax errors in Python programs, a key scenario in introductory programming. More concretely, given a student's buggy program, our goal is…
Descriptors: Computational Linguistics, Feedback (Response), Programming, Computer Science Education
Liu, Chengyuan; Cui, Jialin; Shang, Ruixuan; Xiao, Yunkai; Jia, Qinjin; Gehringer, Edward – International Educational Data Mining Society, 2022
An online peer-assessment system typically allows students to give textual feedback to their peers, with the goal of helping the peers improve their work. The amount of help that students receive is highly dependent on the quality of the reviews. Previous studies have investigated using machine learning to detect characteristics of reviews (e.g.,…
Descriptors: Peer Evaluation, Feedback (Response), Computer Mediated Communication, Teaching Methods
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Huang, Tao; Liang, Mengyi; Yang, Huali; Li, Zhi; Yu, Tao; Hu, Shengze – International Educational Data Mining Society, 2021
Influenced by COVID-19, online learning has become one of the most important forms of education in the world. In the era of intelligent education, knowledge tracing (KT) can provide excellent technical support for individualized teaching. For online learning, we come up with a new knowledge tracing method that integrates mathematical exercise…
Descriptors: Mathematics Instruction, Teaching Methods, Online Courses, Distance Education
Stone, Cathlyn; Donnelly, Patrick J.; Dale, Meghan; Capello, Sarah; Kelly, Sean; Godley, Amanda; D'Mello, Sidney K. – International Educational Data Mining Society, 2019
We examine the ability of supervised text classification models to identify several discourse properties from teachers' speech with an eye for providing teachers with meaningful automated feedback about the quality of their classroom discourse. We collected audio recordings from 28 teachers from 10 schools in 164 authentic classroom sessions,…
Descriptors: Classification, Classroom Communication, Audio Equipment, Feedback (Response)
Reilly, Joseph M.; Schneider, Bertrand – International Educational Data Mining Society, 2019
Collaborative problem solving in computer-supported environments is of critical importance to the modern workforce. Coworkers or collaborators must be able to co-create and navigate a shared problem space using discourse and non-verbal cues. Analyzing this discourse can give insights into how consensus is reached and can estimate the depth of…
Descriptors: Problem Solving, Discourse Analysis, Cooperative Learning, Computer Assisted Instruction
Li, Haiying; Cai, Zhiqiang; Graesser, Arthur – International Educational Data Mining Society, 2016
In this paper, we applied the crowdsourcing approach to develop an automated popularity summary scoring, called wild summaries. In contrast, the golden standard summaries generated by one or more experts are called expert summaries. The innovation of our study is to compute LSA (Latent Semantic Analysis) similarities between target summary and…
Descriptors: Peer Acceptance, Electronic Publishing, Collaborative Writing, Grading
Michalenko, Joshua J.; Lan, Andrew S.; Waters, Andrew E.; Grimaldi, Philip J.; Baraniuk, Richard G. – International Educational Data Mining Society, 2017
An important, yet largely unstudied problem in student data analysis is to detect "misconceptions" from students' responses to "open-response" questions. Misconception detection enables instructors to deliver more targeted feedback on the misconceptions exhibited by many students in their class, thus improving the quality of…
Descriptors: Data Analysis, Misconceptions, Student Attitudes, Feedback (Response)
Crossley, Scott; Ocumpaugh, Jaclyn; Labrum, Matthew; Bradfield, Franklin; Dascalu, Mihai; Baker, Ryan S. – International Educational Data Mining Society, 2018
A number of studies have demonstrated strong links between students' language features (as found in spoken and written production) and their math performance. However, no studies have examined links between the students' language features and measures of their Math Identity. This project extends prior studies that use natural language processing…
Descriptors: Correlation, Speech Communication, Written Language, Mathematics Achievement
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Boyer, Kristy Elizabeth, Ed.; Yudelson, Michael, Ed. – International Educational Data Mining Society, 2018
The 11th International Conference on Educational Data Mining (EDM 2018) is held under the auspices of the International Educational Data Mining Society at the Templeton Landing in Buffalo, New York. This year's EDM conference was highly competitive, with 145 long and short paper submissions. Of these, 23 were accepted as full papers and 37…
Descriptors: Data Collection, Data Analysis, Computer Science Education, Program Proposals
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection