Publication Date
In 2025 | 0 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 30 |
Since 2016 (last 10 years) | 30 |
Since 2006 (last 20 years) | 30 |
Descriptor
Source
Journal of Statistics and… | 30 |
Author
Publication Type
Journal Articles | 30 |
Reports - Descriptive | 22 |
Reports - Research | 8 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 21 |
Postsecondary Education | 21 |
Secondary Education | 1 |
Audience
Teachers | 1 |
Location
North Carolina (Durham) | 2 |
California | 1 |
California (Berkeley) | 1 |
Canada | 1 |
District of Columbia | 1 |
Hong Kong | 1 |
Indiana | 1 |
Massachusetts | 1 |
Minnesota | 1 |
New Zealand | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
What Works Clearinghouse Rating
Byran J. Smucker; Nathaniel T. Stevens; Jacqueline Asscher; Peter Goos – Journal of Statistics and Data Science Education, 2023
The design and analysis of experiments (DOE) has historically been an important part of an education in statistics, and with the increasing complexity of modern production processes and the advent of large-scale online experiments, it continues to be highly relevant. In this article, we provide an extensive review of the literature on DOE…
Descriptors: Statistics Education, Data Science, Experiments, Teaching Methods
Amaliah, Dewi; Cook, Dianne; Tanaka, Emi; Hyde, Kate; Tierney, Nicholas – Journal of Statistics and Data Science Education, 2022
Textbook data is essential for teaching statistics and data science methods because it is clean, allowing the instructor to focus on methodology. Ideally textbook datasets are refreshed regularly, especially when they are subsets taken from an ongoing data collection. It is also important to use contemporary data for teaching, to imbue the sense…
Descriptors: Statistics Education, Data Science, Textbooks, Data Analysis
Bay Arinze – Journal of Statistics and Data Science Education, 2023
Data Analytics has grown dramatically in importance and in the level of business deployments in recent years. It is used across most functional areas and applications, some of the latter including market campaigns, detecting fraud, determining credit, identifying assembly line defects, health services and many others. Indeed, the realm of…
Descriptors: Data Analysis, Elections, Simulation, Statistics Education
Kim, Albert Y.; Hardin, Johanna – Journal of Statistics and Data Science Education, 2021
We provide a computational exercise suitable for early introduction in an undergraduate statistics or data science course that allows students to "play the whole game" of data science: performing both data collection and data analysis. While many teaching resources exist for data analysis, such resources are not as abundant for data…
Descriptors: Data Collection, Data Analysis, Statistics Education, Undergraduate Students
Travis Weiland; Immanuel Williams – Journal of Statistics and Data Science Education, 2024
In this article, we consider how to make data more meaningful to students through the choice of data and the activities we use them in drawing upon students lived experiences more in the teaching of statistics and data science courses. In translating scholarship around culturally relevant pedagogy from the fields of education and mathematics…
Descriptors: Undergraduate Students, Predominantly White Institutions, Statistics Education, Culturally Relevant Education
MacKay, Jon – Journal of Statistics and Data Science Education, 2022
Students need to know how to discern patterns and make decisions using visual information in our modern economy. However, there are few sources of real-world information available to instructors that give students access to visualizations to help develop their skills in interpreting complex situations using diverse data sources. This article…
Descriptors: Pandemics, COVID-19, Visual Aids, Data Analysis
Dogucu, Mine; Çetinkaya-Rundel, Mine – Journal of Statistics and Data Science Education, 2022
It is recommended that teacher-scholars of data science adopt reproducible workflows in their research as scholars and teach reproducible workflows to their students. In this article, we propose a third dimension to reproducibility practices and recommend that regardless of whether they teach reproducibility in their courses or not, data science…
Descriptors: Statistics Education, Data Science, Teaching Methods, Instructional Materials
Vance, Eric A.; Alzen, Jessica L.; Smith, Heather S. – Journal of Statistics and Data Science Education, 2022
Statisticians and data scientists have been called upon to increase the impact they have through their collaborative projects. Statistics and data science practitioners and their educators can achieve and enable greater impact by learning how to create shared understanding with their collaborators as well as teaching this concept to their…
Descriptors: Statistics Education, Data Analysis, Teaching Methods, Misconceptions
Sara Colando; Johanna Hardin – Journal of Statistics and Data Science Education, 2024
There is wide agreement that ethical considerations are a valuable aspect of a data science curriculum, and to that end, many data science programs offer courses in data science ethics. There are not always, however, explicit connections between data science ethics and the centuries-old work on ethics within the discipline of philosophy. Here, we…
Descriptors: Philosophy, Data Science, Ethical Instruction, Ethics
Tackett, Maria – Journal of Statistics and Data Science Education, 2023
As data have become more prevalent in academia, industry, and daily life, it is imperative that undergraduate students are equipped with the skills needed to analyze data in the modern environment. In recent years there has been a lot of work innovating introductory statistics courses and developing introductory data science courses; however,…
Descriptors: Educational Change, Undergraduate Students, Regression (Statistics), Statistics Education
Dennis Tay – Journal of Statistics and Data Science Education, 2024
Data analytics and programming skills are increasingly important in the humanities, especially in disciplines like linguistics due to the rapid growth of natural language processing (NLP) technologies. However, attitudes and perceptions of students as novice learners, and the attendant pedagogical implications, remain underexplored. This article…
Descriptors: Data Analysis, Programming, Linguistics, Graduate Students
Qing Wang; Xizhen Cai – Journal of Statistics and Data Science Education, 2024
Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optimization problem under constraints, which is…
Descriptors: Active Learning, Class Activities, Classification, Artificial Intelligence
Ostblom, Joel; Timbers, Tiffany – Journal of Statistics and Data Science Education, 2022
In the data science courses at the University of British Columbia, we define data science as the study, development and practice of reproducible and auditable processes to obtain insight from data. While reproducibility is core to our definition, most data science learners enter the field with other aspects of data science in mind, for example…
Descriptors: Statistics Education, Data Science, Teaching Methods, Replication (Evaluation)
Kim, Brian; Henke, Graham – Journal of Statistics and Data Science Education, 2021
One of the biggest hurdles of teaching data science and programming techniques to beginners is simply getting started with the technology. With multiple versions of the same coding language available (e.g., Python 2 and Python 3), various additional libraries and packages to install, as well as integrated development environments to navigate, the…
Descriptors: Computer Software, Data Analysis, Programming Languages, Computer Science Education
Hoffman, Heather J.; Elmi, Angelo F. – Journal of Statistics and Data Science Education, 2021
Teaching students statistical programming languages while simultaneously teaching them how to debug erroneous code is challenging. The traditional programming course focuses on error-free learning in class while students' experiences outside of class typically involve error-full learning. While error-free teaching consists of focused lectures…
Descriptors: Statistics Education, Programming Languages, Troubleshooting, Coding
Previous Page | Next Page »
Pages: 1 | 2