NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Neel, Matthew S. – Physics Education, 2022
Similar to how stealth materials were developed to reduce the radar wave energy returning from an aircraft, here we explore a low-cost laboratory demonstration that uses similar principles to prevent detection of an object by an ultrasonic sensor. This demonstration setup can be used as a starting point to encourage students to explore the surface…
Descriptors: Acoustics, Physics, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Koval'aková, Mária; Kladivová, Mária; Gibová, Zuzana – Physics Teacher, 2020
The acoustic resonance in four glass Helmholtz resonators with diameters of 70, 52, 40, and 32 mm was detected in the frequency range of 360 to 1700 Hz using the simple experimental setup presented in this paper. The measured amplitudes of acoustic pressure required correction since the sound pressure amplitude of the loudspeaker used was not…
Descriptors: Physics, Science Instruction, Laboratory Experiments, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, J.; Bouman, L.; Cayruth, F.; Elliott, C.; Francis, B.; Gogo, E.; Hyman, C.; Marshall, A.; Masters, J.; Olano, W.; Paone, A.; Patel, K.; Richards, L.; Sbardella, C.; Snider, A.; Trinh, B.; Umari, F.; Wilks, H. – Physics Teacher, 2020
These days, smartphones are popular commodities among students in high school and college. Students carry their devices all the time, so why not use such a popular electronic device to measure physical quantities such as "g" in physics labs? In this work, we report a "multiple tasking" method, a measurement technique that we…
Descriptors: Physics, Science Instruction, Teaching Methods, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Allen, Thomas; Chally, Alex; Moser, Bradley; Widenhorn, Ralf – Physics Teacher, 2019
The labs presented here build on a simple speed of sound activity and models medical ultrasound imaging by demonstrating how multiple reflections propagate in a closed system. A short sound pulse is emitted into a pipe that is closed at one end and contains one or more partially reflecting surfaces within the pipe. The variety of reflections and…
Descriptors: Physics, Science Instruction, Acoustics, Diagnostic Tests
Peer reviewed Peer reviewed
Direct linkDirect link
de Sousa, Gabriel L. A.; Cardoso, George C. – Physics Education, 2018
We use analogies to provide introductory laboratory students intuition into measurement uncertainties. Using a battery-resistor circuit we discuss uncertainty concepts and derive expressions for uncertainty of the mean and sums of uncertainties. Finally, we draw attention to the fact that the interpretation of standard deviation as uncertainty…
Descriptors: Physics, Science Instruction, Statistical Analysis, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Pathare, Shirish Rajan; Raghavendra, M. K.; Huli, Saurabhee – Physics Teacher, 2017
Recently devices such as the optical mouse of a computer, webcams, Wii remote, and digital cameras have been used to record and analyze different physical phenomena quantitatively. Devices like tablets and smartphones are also becoming popular. Different scientific applications available at Google Play (Android devices) or the App Store (iOS…
Descriptors: Physics, Laboratory Experiments, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Eshach, H.; Volfson, A. – Physics Education, 2015
In the present paper we suggest an original physical explanatory model that explains the mechanism of the sound amplification process in a stethoscope. We discuss the amplification of a single pulse, a continuous wave of certain frequency, and finally we address the resonant frequencies. It is our belief that this model may provide students with…
Descriptors: Acoustics, Physics, Models, Science Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Molek, Karen Sinclair; Reyes, Karl A.; Burnette, Brandon A.; Stepherson, Jacob R. – Journal of Chemical Education, 2015
Measuring the heat capacity ratios, [gamma], of gases either through adiabatic expansion or sound velocity is a well established physical chemistry experiment. The most accurate experiments depend on an exact determination of sound origin, which necessitates the use of lasers or a wave generator, where time zero is based on an electrical trigger.…
Descriptors: Heat, Science Instruction, Science Experiments, Acoustics
Peer reviewed Peer reviewed
Direct linkDirect link
Campbell, Dean J.; Peterson, Joshua P.; Fitzjarrald, Tamara J. – Journal of Chemical Education, 2013
These laboratory experiments are designed to familiarize students with concepts of spectroscopy by using sound waves. Topics covered in these experiments include the structure of nitinol alloys and polymer chain stiffness as a function of structure and temperature. Generally, substances that are stiffer or have higher symmetry at the molecular…
Descriptors: Spectroscopy, Acoustics, Familiarity, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Branca, Mario; Soletta, Isabella – Journal of Chemical Education, 2007
The velocity of sound in a gas depends on its temperature, molar mass, and [lambda] = C[subscript p]/C[subscript v], ratio (heat capacity at a constant pressure to heat capacity at constant volume). The [lambda] values for air, oxygen, nitrogen, argon, and carbon dioxide were determined by measuring the velocity of the sound through the gases at…
Descriptors: Chemistry, Motion, Laboratory Experiments, Calculators
Peer reviewed Peer reviewed
Physics Education, 1988
Describes four physics experiments including "Investigation of Box Resonances Using a Micro"; "A Direct Reading Wattmeter, DC or AC"; "Exercises in the Application of Ohm's Law"; and "Hysteresis on Gas Discharges." Discusses procedures, instrumentation, and analysis in each example. (CW)
Descriptors: Acoustics, College Science, Computer Uses in Education, Electricity