NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Does not meet standards1
Showing 1 to 15 of 69 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Craig J. Cullen; Lawrence Ssebaggala; Amanda L. Cullen – Mathematics Teacher: Learning and Teaching PK-12, 2024
In this article, the authors share their favorite "Construct It!" activity, which focuses on rate of change and functions. The initial approach to instruction was procedural in nature and focused on making use of formulas. Specifically, after modeling how to find the slope of the line given two points and use it to solve for the…
Descriptors: Models, Mathematics Instruction, Teaching Methods, Generalization
Peer reviewed Peer reviewed
Direct linkDirect link
Jason Ureña; Rafael Ramírez-Uclés; María C. Cañadas; Marta Molina – International Journal of Mathematical Education in Science and Technology, 2024
Recent research has highlighted the role of functional relationships in introducing elementary school students to algebraic thinking. This functional approach is here considered to study essential components of algebraic thinking such as generalization and its representation, as well as the strategies used by students and their connection with…
Descriptors: Generalization, Mathematics Instruction, Elementary School Students, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Karina J. Wilkie – Mathematics Education Research Journal, 2024
Quadratics provide a foundational context for making sense of many important algebraic concepts, such as variables and parameters, nonlinear rates of change, and views of function. Yet researchers have highlighted students' difficulties in connecting such concepts. This in-depth qualitative study with two pairs of Year 10 (15 or 16-year-old)…
Descriptors: Algebra, Mathematics Instruction, Mathematical Concepts, Grade 10
Peer reviewed Peer reviewed
Direct linkDirect link
Kieran, Carolyn – ZDM: Mathematics Education, 2022
Early algebraic thinking is the reasoning engaged in by 5- to 12-year-olds as they build meaning for the objects and ways of thinking to be encountered within the later study of secondary school algebra. Ever since the 1990s when interest in developing algebraic thinking in the earlier grades began to emerge, there has been a steady growth in the…
Descriptors: Algebra, Thinking Skills, Mathematics Instruction, Elementary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
J. Ureña; R. Ramírez; M. Molina; M. C. Cañadas – Mathematics Education Research Journal, 2024
We conducted a descriptive exploratory study in which we analyzed 313 sixth to eighth grade students' answers to a word problem, accompanied by diagrams, involving generalization in an algebraic functional context. In this research, we jointly addressed two objectives: (a) to determine the strategies deployed by students to generalize and (b) to…
Descriptors: Mathematics Instruction, Generalization, Symbols (Mathematics), Age Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Tillema, Erik S.; Burch, Lori J. – ZDM: Mathematics Education, 2022
This paper presents data from the first of three iterations of teaching experiments conducted with secondary teachers. The purpose of the experiments was to investigate how teachers' combinatorial reasoning could support their development of algebraic structure, specifically structural relationships between the roots and coefficients of…
Descriptors: Secondary School Students, Algebra, Mathematics Instruction, Generalization
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zeycan Kama; Mine Isiksal Bostan; Zelha Tunç Pekkan – Journal of Pedagogical Research, 2023
This study investigates sixth-grade Turkish students' pattern-generalization approaches among arithmetical generalization, algebraic generalization, and naïve induction. A qualitative case study design was employed. The data was collected from four sixth-grade students through the Pattern Questionnaire (PQ) and individual interviews based on the…
Descriptors: Grade 6, Generalization, Rote Learning, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Amy B. Ellis; Anne Waswa; Michael Hamilton; Kevin C. Moore; Aytug Çelik – Journal for Research in Mathematics Education, 2024
Generalizing is a critical aspect of mathematics learning, with researchers and policy documents highlighting generalizing as a core mathematical practice. It can also be challenging to foster in class settings, and teachers need access to better resources to teach generalizing, including an understanding of effective forms of instruction. This…
Descriptors: Generalization, Teaching Methods, Mathematics Instruction, Instructional Effectiveness
Peer reviewed Peer reviewed
Direct linkDirect link
Relaford-Doyle, Josephine; Núñez, Rafael – International Journal of Research in Undergraduate Mathematics Education, 2021
This paper describes a study that used a novel method to investigate conceptual difficulties with mathematical induction among two groups of undergraduate students: students who had received university-level instruction in formal mathematical induction, and students who had not been exposed to formal mathematical induction at the university level.…
Descriptors: Concept Formation, Mathematical Concepts, Difficulty Level, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Wilkie, Karina J. – International Journal of Science and Mathematics Education, 2020
An important goal in school algebra is to help students notice the covariational nature of functional relationships, how the values of variables change in relation to each other. This study explored 102 Year 7 (12 to 13-year-old) students' covariational reasoning with their constructed graphs for figural growing patterns they had generalised. A…
Descriptors: Graphs, Secondary School Students, Generalization, Mathematical Concepts
Stephens, Max; Day, Lorraine; Horne, Marj – Mathematics Education Research Group of Australasia, 2022
This paper will elaborate five levels of algebraic generalisation based on an analysis of students' responses to Reframing Mathematical Futures II (RMFII) tasks designed to assess algebraic reasoning. The five levels of algebraic generalisation will be elaborated and illustrated using selected tasks from the RMFII study. The five levels will be…
Descriptors: Algebra, Mathematics Skills, Mathematics Instruction, Generalization
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Blanton, Maria – North American Chapter of the International Group for the Psychology of Mathematics Education, 2022
Learning progressions have become an important construct in educational research, in part because of their ability to inform the design of coherent standards, curricula, assessments, and instruction. In this paper, I discuss how a learning progressions approach has guided our development of an early algebra innovation for the elementary grades and…
Descriptors: Learning Trajectories, Access to Education, Algebra, Mathematics Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rupnow, Rachel; Randazzo, Brooke – North American Chapter of the International Group for the Psychology of Mathematics Education, 2022
Isomorphism and homomorphism appear throughout abstract algebra, yet how algebraists characterize these concepts, especially homomorphism, remains understudied. Based on interviews with nine research-active mathematicians, we highlight new sameness-based conceptual metaphors and three new clusters of metaphors: sameness/formal definition, changing…
Descriptors: Mathematics Instruction, Teaching Methods, Algebra, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Goñi-Cervera, J.; Cañadas, M. C.; Polo-Blanco, I. – ZDM: Mathematics Education, 2022
Generalisation is a skill that enables learners to acquire knowledge in general, and mathematical knowledge in particular. It is a core aspect of algebraic thinking and, in particular, of functional thinking, as a type of algebraic thinking. Introducing primary school children to functional thinking fosters their ability to generalise, explain and…
Descriptors: Generalization, Autism Spectrum Disorders, Elementary School Students, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Raz Harel; Shai Olsher; Michal Yerushalmy – Research in Mathematics Education, 2024
Conjectures are a key component of mathematical inquiry, a process in which the students raise conjectures, refute or dismiss some of them, and formulate additional ones. Taking a design-based research approach, we formulated a design principle for personal feedback in supporting the iterative process of conjecturing. We empirically explored the…
Descriptors: Mathematics Instruction, Teaching Methods, Feedback (Response), Thinking Skills
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5