NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Flesch Reading Ease Formula1
What Works Clearinghouse Rating
Showing 1 to 15 of 32 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rebeckah K. Fussell; Megan Flynn; Anil Damle; Michael F. J. Fox; N. G. Holmes – Physical Review Physics Education Research, 2025
Recent advancements in large language models (LLMs) hold significant promise for improving physics education research that uses machine learning. In this study, we compare the application of various models for conducting a large-scale analysis of written text grounded in a physics education research classification problem: identifying skills in…
Descriptors: Physics, Computational Linguistics, Classification, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Jionghao Lin; Wei Tan; Lan Du; Wray Buntine; David Lang; Dragan Gasevic; Guanliang Chen – IEEE Transactions on Learning Technologies, 2024
Automating the classification of instructional strategies from a large-scale online tutorial dialogue corpus is indispensable to the design of dialogue-based intelligent tutoring systems. Despite many existing studies employing supervised machine learning (ML) models to automate the classification process, they concluded that building a…
Descriptors: Classification, Dialogs (Language), Teaching Methods, Computer Assisted Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Mengxue; Baral, Sami; Heffernan, Neil; Lan, Andrew – International Educational Data Mining Society, 2022
Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-the-art approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these…
Descriptors: Grading, Mathematics Instruction, Artificial Intelligence, Form Classes (Languages)
Peer reviewed Peer reviewed
Direct linkDirect link
Qing Wang; Xizhen Cai – Journal of Statistics and Data Science Education, 2024
Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optimization problem under constraints, which is…
Descriptors: Active Learning, Class Activities, Classification, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
E. Gothai; S. Saravanan; C. Thirumalai Selvan; Ravi Kumar – Education and Information Technologies, 2024
In recent years, online education has been given more and more attention with the widespread use of the internet. The teaching procedure divides space and makes time for online learning; though teachers cannot control the learners accurately, the state of education calculates learners' learning situation. This paper explains that the discourse…
Descriptors: Artificial Intelligence, Discourse Analysis, Classification, Comparative Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Li, Yuheng; Rakovic, Mladen; Poh, Boon Xin; Gaševic, Dragan; Chen, Guanliang – International Educational Data Mining Society, 2022
Learning objectives, especially those well defined by applying Bloom's taxonomy for Cognitive Objectives, have been widely recognized as important in various teaching and learning practices. However, many educators have difficulties developing learning objectives appropriate to the levels in Bloom's taxonomy, as they need to consider the…
Descriptors: Educational Objectives, Taxonomy, Universities, Cognitive Ability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Holmes, Wayne; Iniesto, Francisco; Anastopoulou, Stamatina; Boticario, Jesus G. – International Review of Research in Open and Distributed Learning, 2023
Increasingly, Artificial Intelligence (AI) is having an impact on distance-based higher education, where it is revealing multiple ethical issues. However, to date, there has been limited research addressing the perspectives of key stakeholders about these developments. The study presented in this paper sought to address this gap by investigating…
Descriptors: Artificial Intelligence, Distance Education, Higher Education, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Thaweesak Chanpradit; Phakkaramai Samran; Siriprapa Saengpinit; Pailin Subkasin – Journal of English Teaching, 2024
AI-generated paraphrasing tools, especially QuillBot and Paraphrasing Tool, play a crucial role in preventing plagiarism in academic writing. However, their effectiveness and proficiency have been questioned, particularly regarding the adequacy of their strategies. This qualitative study analyzed the paraphrasing strategies and proficiency levels…
Descriptors: English (Second Language), Second Language Learning, Second Language Instruction, Phrase Structure
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mohamed, Mohamed Zulhilmi bin; Hidayat, Riyan; Suhaizi, Nurain Nabilah binti; Sabri, Norhafiza binti Mat; Mahmud, Muhamad Khairul Hakim bin; Baharuddin, Siti Nurshafikah binti – International Electronic Journal of Mathematics Education, 2022
The advancement of technology like artificial intelligence (AI) provides a chance to help teachers and students solve and improve teaching and learning performances. The goal of this review is to add to the conversation by offering a complete overview of AI in mathematics teaching and learning for students at all levels of education. A systematic…
Descriptors: Artificial Intelligence, Mathematics Instruction, Meta Analysis, Databases
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
Direct linkDirect link
Min-Chi Chiu; Gwo-Jen Hwang; Lu-Ho Hsia; Fong-Ming Shyu – Interactive Learning Environments, 2024
In a conventional art course, it is important for a teacher to provide feedback and guidance to individual students based on their learning status. However, it is challenging for teachers to provide immediate feedback to students without any aid. The advancement of artificial intelligence (AI) has provided a possible solution to cope with this…
Descriptors: Art Education, Artificial Intelligence, Teaching Methods, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Paulsen, Justin; Valdivia, Dubravka Svetina – Journal of Experimental Education, 2022
Cognitive diagnostic models (CDMs) are a family of psychometric models designed to provide categorical classifications for multiple latent attributes. CDMs provide more granular evidence than other psychometric models and have potential for guiding teaching and learning decisions in the classroom. However, CDMs have primarily been conducted using…
Descriptors: Psychometrics, Classification, Teaching Methods, Learning Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bednorz, David; Kleine, Michael – International Electronic Journal of Mathematics Education, 2023
The study examines language dimensions of mathematical word problems and the classification of mathematical word problems according to these dimensions with unsupervised machine learning (ML) techniques. Previous research suggests that the language dimensions are important for mathematical word problems because it has an influence on the…
Descriptors: Word Problems (Mathematics), Classification, Mathematics Instruction, Difficulty Level
UK Department for Education, 2024
This report sets out the findings of the technical development work completed as part of the Use Cases for Generative AI in Education project, commissioned by the Department for Education (DfE) in September 2023. It has been published alongside the User Research Report, which sets out the findings from the ongoing user engagement activity…
Descriptors: Artificial Intelligence, Technology Uses in Education, Computer Software, Computational Linguistics
Peer reviewed Peer reviewed
Direct linkDirect link
Motejlek, Jiri; Alpay, Esat – IEEE Transactions on Learning Technologies, 2021
This article presents and analyzes existing taxonomies of virtual and augmented reality and demonstrates knowledge gaps and mixed terminology, which may cause confusion among educators, researchers, and developers. Several such occasions of confusion are presented. A methodology is then presented to construct a taxonomy of virtual reality and…
Descriptors: Taxonomy, Teaching Methods, Artificial Intelligence, Educational Objectives
Previous Page | Next Page »
Pages: 1  |  2  |  3