Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 23 |
Since 2006 (last 20 years) | 96 |
Descriptor
College Science | 289 |
Teaching Methods | 289 |
Engineering Education | 220 |
Science Instruction | 161 |
Higher Education | 149 |
Science Education | 147 |
Chemical Engineering | 87 |
Chemistry | 56 |
Engineering | 49 |
Undergraduate Study | 44 |
Problem Solving | 43 |
More ▼ |
Source
Author
Publication Type
Education Level
Higher Education | 95 |
Postsecondary Education | 55 |
Secondary Education | 4 |
Elementary Education | 3 |
Elementary Secondary Education | 2 |
High Schools | 2 |
Adult Education | 1 |
Two Year Colleges | 1 |
Audience
Practitioners | 110 |
Teachers | 60 |
Researchers | 18 |
Students | 7 |
Administrators | 6 |
Policymakers | 4 |
Location
Spain | 5 |
France | 3 |
Australia | 2 |
Canada | 2 |
Pennsylvania | 2 |
United Kingdom | 2 |
United States | 2 |
Alabama | 1 |
Belgium | 1 |
Brazil | 1 |
Chile | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Learning Style Inventory | 1 |
Motivated Strategies for… | 1 |
Myers Briggs Type Indicator | 1 |
What Works Clearinghouse Rating
Courtney A. Pfluger; Jennifer R. Weiser; Kristine Horvat – Chemical Engineering Education, 2024
As understanding of STEM education pedagogy deepens, traditional lecture-based courses evolve to include new philosophies, such as active learning, project-based learning, and inquiry-based learning (IBL). Additionally, hands-on educational experiences at the early stages of an undergraduate program are seminal in propelling students into the…
Descriptors: Experiential Learning, Active Learning, Inquiry, Teaching Methods
Fisher, Robert J. – Chemical Engineering Education, 2019
Our exponentially increasing knowledge base creates many new technology challenges. Academia must therefore respond emphatically. Educating rising professionals to successfully confront these future difficulties requires innovative curricula challenges. A successful adaptation integrates STEM program protocols into core courses. Embracing…
Descriptors: Science Instruction, Teaching Methods, Mathematical Concepts, Engineering Education
Kelsie J. Anson – ProQuest LLC, 2021
While zinc (Zn[superscript 2+]) is a vital ion for cell function and human health, we are still learning about how Zn[superscript 2+] concentration and localization is regulated and the role that Zn[superscript 2+] fluctuations may play in regulating cell signaling and cell fate. Here, we use fluorescent tools to study the interaction between…
Descriptors: Cytology, Metabolism, Case Studies, Teaching Methods
Euler, Elias; Prytz, Christopher; Gregorcic, Bor – Physics Education, 2020
In this paper, we present three types of activity that we have observed during students' free exploration of a software called "Algodoo," which allows students to explore a range of physics phenomena within the same digital learning environment. We discuss how, by responding to any of the three activity types we identify in the students'…
Descriptors: Physics, Educational Environment, Educational Technology, College Students
Marlowe, Justin; Tsilomelekis, George – Journal of Chemical Education, 2020
The importance of utilizing spectroscopic techniques for unraveling structural and compositional changes in nonreacting and reacting systems is unquestionable. Nowadays, efforts are directed towards the introduction of relevant spectroscopic techniques to undergraduate students in order to prepare them for future careers in industry and academia,…
Descriptors: Science Instruction, College Science, Spectroscopy, Chemistry
Reeves, Shalaunda M.; Crippen, Kent J. – Journal of Science Education and Technology, 2021
Current technology has the capacity for affording a virtual experience that challenges the notion of a teaching laboratory for undergraduate science and engineering students. Though the potential of virtual laboratories (V-Labs) has been extolled and investigated in a number of areas, this research has not been synthesized for the context of…
Descriptors: Science Instruction, College Science, Undergraduate Study, Engineering Education
Zuza, Kristina; De Cock, Mieke; van Kampen, Paul; Kelly, Thomas; Guisasola, Jenaro – Physical Review Physics Education Research, 2020
In this work we present the application of design based research (DBR) methodology to conduct a systematic iterative study of the design and implementation of a teaching-learning sequence (TLS) on emf (electromotive force). This work is the final part of a broader study that started with the analysis of students' difficulties with emf in the…
Descriptors: Science Instruction, Physics, Scientific Concepts, Energy
Piergiovanni, Polly R.; Goundie, David A. – Chemical Engineering Education, 2019
Chemical engineering is a challenging field to explain to first-year students. Food production processes are a safe and accessible way to introduce the students to basic engineering concepts. Modernist cuisine -- using scientific methods and engineering techniques to enhance classical cooking -- was used as a hook to capture the attention of…
Descriptors: Chemical Engineering, College Science, Food, Scientific Concepts
Rodriguez, Jon-Marc G.; Bain, Kinsey; Hux, Nicholas P.; Towns, Marcy H. – Chemistry Education Research and Practice, 2019
Problem solving is a critical feature of highly quantitative physical science topics, such as chemical kinetics. In order to solve a problem, students must cue into relevant features, ignore irrelevant features, and choose among potential problem-solving approaches. However, what is considered appropriate or productive for problem solving is…
Descriptors: Science Instruction, Problem Solving, Chemistry, Kinetics
Johnson, Kristen C.; Sabel, Jaime L.; Cole, Judith; Pruett, Christin L.; Plymale, Ruth; Reyna, Nathan S. – Biochemistry and Molecular Biology Education, 2022
The need for changing how science is taught and the expansion of undergraduate research experiences is essential to foster critical thinking in the Natural Sciences. Most faculty research programs only involve a small number of upper-level undergraduate students each semester. The course-based undergraduate research experience (CURE) model enables…
Descriptors: Undergraduate Students, College Science, Science Education, Science Instruction
Foutz, Timothy L. – European Journal of Engineering Education, 2019
Research suggests that a significant reason that a large number of students earn low grades in the fundamental engineering science course Statics is that they may be entering the course with incorrect conceptual knowledge of mathematics and physics. The self-explanation learning approach called collective argumentation helps k-12 students to…
Descriptors: Persuasive Discourse, Learning Strategies, Engineering Education, Academic Achievement
Zalewski, Janusz; Novak, Gregor; Carlson, Randall E. – Education Sciences, 2019
This paper is an overview of approaches to teaching physics courses delivered to students of engineering disciplines. It addresses, first, the history of teaching physics to engineering students starting in the early 20th century, then reviews the main issues presented and discussed over the last decade in a series of conferences on Physics…
Descriptors: Physics, Science Instruction, Engineering Education, Undergraduate Students
de Jesus, V. L. B.; Pérez, C. A. C.; de Oliveira, A. L.; Sasaki, D. G. G. – Physics Education, 2019
Currently, the number of smartphones with an embedded gyroscope sensor has been increasing due games whose performance relies on 3D augmented reality. In general, teaching papers on the gyroscope sensor address very simple spatial configuration, where the fixed rotation axis coincides to the z-axis of the smartphone. This work presents five…
Descriptors: Science Instruction, Scientific Concepts, Motion, Teaching Methods
Brennan, Janie; Solomon, Erin D. – Chemical Engineering Education, 2019
A unit operations laboratory course was significantly modified to be an open-ended problem-based experience with an emphasis on teamwork and communication skills. Students were surveyed to assess gains in engineering self-efficacy as well as to indicate which course structure components were most beneficial to learning. Students showed significant…
Descriptors: Science Instruction, Science Laboratories, Self Efficacy, Chemistry
Talanquer, Vicente; Bucat, Robert; Tasker, Roy; Mahaffy, Peter G. – Journal of Chemical Education, 2020
The COVID-19 pandemic has fundamentally changed many aspects of our world including the way we teach chemistry. Our emergence from the pandemic provides an opportunity for deep reflection and intentional action about what we teach, and why, as well as how we facilitate student learning. Focusing on foundational postsecondary chemistry courses, we…
Descriptors: COVID-19, Pandemics, Educational Change, Resilience (Psychology)