NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Furge, Laura Lowe; Stevens-Truss, Regina; Moore, D. Blaine; Langeland, James A. – Biochemistry and Molecular Biology Education, 2009
Bioinformatics education for undergraduates has been approached primarily in two ways: introduction of new courses with largely bioinformatics focus or introduction of bioinformatics experiences into existing courses. For small colleges such as Kalamazoo, creation of new courses within an already resource-stretched setting has not been an option.…
Descriptors: Curriculum Development, Interdisciplinary Approach, Chemistry, Active Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Bos, Floris A. B. H.; Terlouw, Cees; Pilot, Albert – Educational Research and Evaluation, 2009
In line with the cognitive theory of multimedia learning by Moreno and Mayer (2007), an interactive, multimodal learning environment was designed for the pretraining of science concepts in the joint area of physics, chemistry, biology, applied mathematics, and computer sciences. In the experimental set up, a pretest was embedded in order to…
Descriptors: Pretests Posttests, Time on Task, Multimedia Instruction, Educational Environment
Gallová, Mária, Ed.; Guncaga, Ján, Ed.; Chanasová, Zuzana, Ed.; Chovancová, Michaela Moldová, Ed. – Online Submission, 2013
Purpose: The purpose of this scientific monograph is to show new and creative approaches to different school subjects in primary and secondary level. Methodology: Interdisciplinary and international comparative approaches were used. Now according to the 7th Framework Program, the preferred form of Science Education (www.scientix.eu) is preferred…
Descriptors: Elementary Secondary Education, Interdisciplinary Approach, Intellectual Disciplines, Comparative Analysis
Peer reviewed Peer reviewed
Soltzberg, Leonard J. – Journal of Chemical Education, 1979
Surveys the current scene in computer graphics from the point of view of a chemistry educator. Discusses the scope of current applications of computer graphics in chemical education, and provides information about hardware and software systems to promote communication with vendors of computer graphics equipment. (HM)
Descriptors: Chemistry, College Science, Computer Graphics, Computer Programs
Lawlor, Joseph – 1984
Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…
Descriptors: Artificial Intelligence, Chemistry, Cognitive Processes, Computer Science
Peer reviewed Peer reviewed
Greene, Brenda M.; And Others – Community Review, 1991
Offers a rationale for collegewide writing across the curriculum (WAC) approaches. Assesses the effectiveness of a WAC project at Medgar Evers College involving two courses (computer science and chemistry). Reports improvement in students' ability to summarize an article's content and writing fluency. Includes writing assignment instructions and…
Descriptors: Basic Skills, Chemistry, Community Colleges, Computer Science
Peer reviewed Peer reviewed
Williams, Ron – Analytical Chemistry, 1989
Described is the use of automated control using microcomputers. Covers the development of the microcontroller and describes advantages and characteristics of several brands of chips. Provides several recent applications of microcontrollers in laboratory automation. (MVL)
Descriptors: Automation, Chemical Analysis, Chemistry, College Science