Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 23 |
Since 2006 (last 20 years) | 26 |
Descriptor
Handheld Devices | 26 |
Laboratory Experiments | 26 |
Teaching Methods | 26 |
Science Instruction | 17 |
Telecommunications | 16 |
Physics | 14 |
Science Experiments | 12 |
Scientific Concepts | 11 |
Computer Software | 9 |
Technology Uses in Education | 9 |
Chemistry | 8 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 26 |
Reports - Descriptive | 15 |
Reports - Research | 11 |
Guides - Classroom - Learner | 1 |
Education Level
Higher Education | 15 |
Postsecondary Education | 13 |
Secondary Education | 6 |
High Schools | 5 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Iraya Yánez-Pérez; Radu Bogdan Toma; Jesús Ángel Meneses-Villagrá – Journal of New Approaches in Educational Research, 2024
Virtual laboratories and simulations have emerged as innovative solutions for science teaching. However, existing resources have various limitations and constraints including cognitive load/mental burden and limited coverage of all necessary steps in scientific inquiry, focusing mainly on the experimental simulation. To bridge this gap and address…
Descriptors: Preservice Teachers, Student Attitudes, Computer Software, Handheld Devices
Aziz Amaaz; Abderrahman Mouradi; Moahamed Erradi – Journal of Baltic Science Education, 2024
Despite the importance of physics practical work in higher education, its implementation is often hampered by various constraints and problems. Technology, such as learning management systems (LMS) and mobile learning, can offer solutions to some of these problems and enrich students' learning experiences. Therefore, this research proposes a model…
Descriptors: Physics, Science Education, Learning Management Systems, Chemistry
Frydenberg, Mark – Information Systems Education Journal, 2023
The Internet of Things (IoT) is a network of objects that can exchange data with other devices also connected to the Internet. One of the most common consumer examples of IoT is home automation, as a variety of smart devices, including doorbells, lightbulbs, thermostats, and refrigerators are now available which users can control remotely using…
Descriptors: Internet, Computer Software, Automation, Information Technology
Mayer, V. V.; Varaksina, E. I. – Physics Education, 2020
For conducting laboratory experiments on Fresnel diffraction, the use of a simple point light source from an LED and the application of a modern smartphone for photographing the diffraction patterns are proposed. The developed devices allow the experiments to be carried out under normal laboratory lighting.
Descriptors: Photography, Physics, Science Education, Teaching Methods
Kim, J.; Bouman, L.; Cayruth, F.; Elliott, C.; Francis, B.; Gogo, E.; Hyman, C.; Marshall, A.; Masters, J.; Olano, W.; Paone, A.; Patel, K.; Richards, L.; Sbardella, C.; Snider, A.; Trinh, B.; Umari, F.; Wilks, H. – Physics Teacher, 2020
These days, smartphones are popular commodities among students in high school and college. Students carry their devices all the time, so why not use such a popular electronic device to measure physical quantities such as "g" in physics labs? In this work, we report a "multiple tasking" method, a measurement technique that we…
Descriptors: Physics, Science Instruction, Teaching Methods, Telecommunications
Carroll, Ryan; Lincoln, James – Physics Teacher, 2020
The phyphox app has demonstrated itself to be useful and impressive for physics teaching. The app is free to download and has so many features that it seems it may be particularly helpful in this time of distance learning. Phyphox (pronounced to sound like "physics") works for Android and Apple phones, and there are many experiments…
Descriptors: Physics, Science Instruction, Teaching Methods, Computer Software
Pili, Unofre; Violanda, Renante – Physics Teacher, 2019
In introductory physics laboratories, spring constants are traditionally measured using the static method. The dynamic method, via vertical spring-mass oscillator, that uses a stopwatch in order to measure the period of oscillations is also commonly employed. However, this time-measuring technique is prone to human errors and in this paper we…
Descriptors: Telecommunications, Handheld Devices, Physics, Scientific Concepts
Bozzo, G. – Physics Teacher, 2020
As soon as children can see, they observe that objects fall freely. From a young age, we spontaneously construct interpretative models to understand this everyday phenomenon. Over the last three decades, numerous experiments have been developed to help students understand physics concepts regarding free fall. Although there are many…
Descriptors: Secondary School Science, Science Instruction, Physics, Teaching Methods
Destino, Joel F.; Cunningham, Katie – Journal of Chemical Education, 2020
In light of COVID-19 in spring 2020, we developed a simple and versatile inquiry-based, laboratory-style active learning colorimetry experiment amenable to at-home quantitative analysis. In this experiment, students acquire an external calibration method using aqueous solutions of a self-selected chromophoric analyte from household products using…
Descriptors: Science Instruction, Chemistry, Science Laboratories, COVID-19
Eileen Johnson; Jeanne Sanders; Karin Jensen – Biomedical Engineering Education, 2023
Online course delivery has increased in prevalence, particularly due to the onset in 2020 of the COVID-19 pandemic. Biomedical engineering laboratory courses pose unique challenges when transitioning to a remote or hybrid space. Here, we describe a novel approach to online lab delivery to improve student learning and engagement in a required…
Descriptors: Blended Learning, Distance Education, Online Courses, Electronic Learning
Mikhailova, Elena A.; Post, Christopher J.; Zurqani, Hamdi A.; Younts, Grayson L. – Education Sciences, 2022
Crowdsourcing is an important tool for collecting spatio-temporal data, which has various applications in education. The objectives of this study were to develop and test a laboratory exercise on soil erosion by water and field data crowdsourcing in an online introductory soil science course (FNR 2040: Soil Information Systems) at Clemson…
Descriptors: Social Sciences, Telecommunications, Handheld Devices, Geographic Information Systems
Altmeyer, Kristin; Kapp, Sebastian; Thees, Michael; Malone, Sarah; Kuhn, Jochen; Brünken, Roland – British Journal of Educational Technology, 2020
Learning with hands-on experiments can be supported by providing essential information virtually during lab work. Augmented reality (AR) appears especially suitable for presenting information during experimentation, as it can be used to integrate both physical and virtual lab work. Virtual information can be displayed in close spatial proximity to…
Descriptors: Concept Formation, Scientific Concepts, Pretests Posttests, Teaching Methods
Alexandros, Kateris; Panagiotis, Lazos; Serafeim, Tsoukos; Pavlos, Tzamalis; Athanasios, Velentzas – European Journal of Physics Education, 2020
Several suggestions for the use of Mobile Phone (MP) sensors in science teaching are found in the literature, and most of them focus on proposing physics experiments that can be conducted with the aid of the sensors that commonly exist in smartphones. The proposed experiments rely on the Bring Your Own Devices (BYOD) approach, that is, students…
Descriptors: Physics, Science Instruction, Teaching Methods, Science Laboratories
Tanino, Yukie; Syed, Amer – Education Sciences, 2019
We designed a hands-on laboratory exercise to demonstrate why injecting an aqueous polymer solution into an oil reservoir (commonly known as "polymer flooding") enhances oil production. Students are split into three groups of two to three. Each group is assigned to a packed Hele-Shaw cell pre-saturated with oil, our laboratory model of…
Descriptors: Physics, Science Instruction, Plastics, Fuels
Tee, Nicholas Yee Kwang; Gan, Hong Seng; Li, Jonathan; Cheong, Brandon Huey-Ping; Tan, Han Yen; Liew, Oi Wah; Ng, Tuck Wah – Journal of Chemical Education, 2018
The handling of chemicals in the laboratory presents a challenge in instructing large class sizes and when students are relatively new to the laboratory environment. In this work, we describe and demonstrate an augmented reality colorimetric titration tool that operates out of the smartphone or tablet of students. It allows multiple students to…
Descriptors: Computer Simulation, Demonstrations (Educational), Handheld Devices, Technology Uses in Education
Previous Page | Next Page »
Pages: 1 | 2