Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 28 |
Since 2006 (last 20 years) | 64 |
Descriptor
Kinetics | 77 |
Motion | 77 |
Teaching Methods | 77 |
Physics | 58 |
Scientific Concepts | 43 |
Science Instruction | 34 |
Scientific Principles | 30 |
Science Experiments | 17 |
Energy | 13 |
Foreign Countries | 13 |
Science Education | 12 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 69 |
Reports - Descriptive | 46 |
Reports - Research | 13 |
Guides - Classroom - Teacher | 9 |
Reports - Evaluative | 5 |
Books | 2 |
Opinion Papers | 1 |
Education Level
Audience
Teachers | 17 |
Practitioners | 5 |
Students | 1 |
Location
Australia | 2 |
Turkey | 2 |
China | 1 |
Finland | 1 |
Hong Kong | 1 |
Hungary | 1 |
Illinois | 1 |
Indonesia | 1 |
Israel | 1 |
Italy | 1 |
Louisiana | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Carone, Delaney; Perkins, Ashley; Scott, Catherine – Science and Children, 2023
This lesson focuses specifically on teaching concepts of speed and its impact on energy, as well as providing a basic introduction to potential and kinetic energy to fourth-grade students. "Next Generation Science Standards" ("NGSS") 4-PS3-1 states that students should be able "to use evidence to construct an explanation…
Descriptors: Grade 4, Science Instruction, Energy, Scientific Concepts
Stannard, Warren B. – Physics Education, 2018
In most high school physics classes, gravity is described as an attractive force between two masses as formulated by Newton over 300 years ago. Einstein's general theory of relativity implies that gravitational effects are instead the result of a "curvature" of space-time. However, explaining why things fall without resorting to Newton's…
Descriptors: Physics, Scientific Concepts, Motion, Kinetics
Vetrone, James – Physics Teacher, 2018
Students often struggle to understand the independence of velocity vectors in two-dimensional motion. Despite seeing classic projectile demonstrations, it is probably not obvious to most new students why the path of motion is parabolic. Likewise, first-year students might not predict that the path of motion is linear in two-dimensional vector…
Descriptors: Physics, Motion, Science Instruction, Student Centered Learning
Beck, Jordan P.; Muniz, Marc N.; Crickmore, Cassidy; Sizemore, Logan – Chemistry Education Research and Practice, 2020
Models that are used to predict and explain phenomena related to molecular vibration and rotation are ubiquitous in physical chemistry, and are of importance in many related fields. Yet, little work has been done to characterize student use and application of these models. We describe the results of a multi-year, multi-institutional qualitative…
Descriptors: Chemistry, Models, Science Instruction, Prediction
Çoban, A.; Erol, M. – Physics Education, 2019
This work reports a rudimentary approach to teach and measure the kinetic friction coefficient using a smartphone that can effectively be employed for teaching purposes. More specifically, the kinetic friction coefficient, which is rather difficult to teach and measure, between various surfaces was determined by two different approaches using the…
Descriptors: Kinetics, Physics, Motion, Science Instruction
Samsudin, Achmad; Afif, Nur Faadhilah; Nugraha, Muhamad Gina; Suhandi, Andi; Fratiwi, Nuzulira Janeusse; Aminudin, Adam Hadiana; Adimayuda, Rizal; Linuwih, Suharto; Costu, Bayram – Journal of Turkish Science Education, 2021
This study aimed to expand PDEODE*E Tasks with the Think-Pair-Share model for reconstructing students' misconceptions on work and energy. The PDEODE*E Tasks with Think-Pair-Share model implemented for students who had not taught the concept of work and energy. The participants include 36 students of tenth grade (22 girls and 14 boys, whose ages…
Descriptors: Science Instruction, Scientific Concepts, Misconceptions, Energy
Sztrajman, Jorge; Sztrajman, Alejandro – Physics Teacher, 2017
The aim of this paper is to propose a method for solving head-on elastic collisions, without algebraic complications, to emphasize the use of the fundamental conservations laws. Head-on elastic collisions are treated in many physics textbooks as examples of conservation of momentum and kinetic energy.
Descriptors: Kinetics, Motion, Physics, Teaching Methods
Ferreira, Annalize; Seyffert, Albertus S.; Lemmer, Miriam – Physics Education, 2017
Many students find it difficult to apply certain physics concepts to their daily lives. This is especially true when they perceive a principle taught in physics class as being in conflict with their experience. An important instance of this occurs when students are instructed to ignore the effect of air resistance when solving kinematics problems.…
Descriptors: Computer Graphics, Scientific Concepts, Physics, Kinetics
Schubert, Frederic E. – Journal of Chemical Education, 2019
The cannon boring experiment of Count Rumford, where eight kilograms of water were boiled by metal on metal friction, is investigated. Consideration of this dramatic demonstration can enrich classroom discussions of calorimetry, units of measure, elements, and thermodynamics. A section pertaining to use of the article in the classroom appears…
Descriptors: Chemistry, Physics, Science Instruction, Science Experiments
Orr, Marisa K.; Jordan, Shawn S. – Advances in Engineering Education, 2019
Dynamics of Machine Elements is a junior-level course in mechanical engineering that covers the kinematics (motion) and kinetics (causes of motion) of machine elements such as linkages, cams, and gear trains. This paper describes the results of adding a Rube Goldberg Machine Contest® project to the course to address student concerns over the lack…
Descriptors: Teaching Methods, Motion, Kinetics, Equipment
Cross, Rod – Physics Teacher, 2016
A spinning top or a spinning hard-boiled egg is fascinating to observe since both objects can remain upright for a relatively long time without falling over. If spun at sufficient speed on a horizontal surface, the spin axis rises to a vertical position and the bottom end tends to remain fixed in position on the surface. If the initial spin is…
Descriptors: Scientific Concepts, Scientific Principles, Motion, Physics
Hancock, James Brian, II; Lee, May – Science Teacher, 2018
Many teachers are confused about how to implement the phenomena-based teaching recommended by the "Next Generation Science Standards" (NGSS Lead States 2013). This article describes one possible approach--purposely repurposing existing activities. This process involves having teachers: (1) Choose a phenomenon that informs the development…
Descriptors: Concept Teaching, Scientific Concepts, Scientific Principles, Teaching Methods
Jeffery, Rondo N.; Farhang, Amiri – Physics Teacher, 2016
The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…
Descriptors: Science Experiments, Physics, Motion, Kinetics
Amir, Nazir; Abdullah, Nor'Aini Bte – Physics Education, 2021
A way to promote student interest and engagement in physics is by capitalizing on students' skills in arts and crafts to design and make physics-based toys. This article illustrates how two students (averaging 14 years of age) in the authors' science class designed and fabricated a variation of a physics-based teaching aid that demonstrates the…
Descriptors: Foreign Countries, Science Interests, Physics, Learner Engagement
Abu, Yuval Ben; Wolfson, Ira; Bran, Gil; Yizhaq, Hezi – Physics Education, 2017
In high-school teaching of mechanics, we deal, among other things, with the nature of static and kinetic friction, forces that are proportional to the normal force. Under the influence of frictional forces, a body moves down a rough sloped decline at a fixed rate of acceleration that is independent of its mass. This situation does not apply to…
Descriptors: Motion, Kinetics, Physics, High School Students