NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Force Concept Inventory1
What Works Clearinghouse Rating
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yunus Kökver; Hüseyin Miraç Pektas; Harun Çelik – Education and Information Technologies, 2025
This study aims to determine the misconceptions of teacher candidates about the greenhouse effect concept by using Artificial Intelligence (AI) algorithm instead of human experts. The Knowledge Discovery from Data (KDD) process model was preferred in the study where the Analyse, Design, Develop, Implement, Evaluate (ADDIE) instructional design…
Descriptors: Artificial Intelligence, Misconceptions, Preservice Teachers, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Kortemeyer, Gerd – Physical Review Physics Education Research, 2023
Massive pretrained language models have garnered attention and controversy due to their ability to generate humanlike responses: Attention due to their frequent indistinguishability from human-generated phraseology and narratives and controversy due to the fact that their convincingly presented arguments and facts are frequently simply false. Just…
Descriptors: Artificial Intelligence, Physics, Science Instruction, Introductory Courses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Michalenko, Joshua J.; Lan, Andrew S.; Waters, Andrew E.; Grimaldi, Philip J.; Baraniuk, Richard G. – International Educational Data Mining Society, 2017
An important, yet largely unstudied problem in student data analysis is to detect "misconceptions" from students' responses to "open-response" questions. Misconception detection enables instructors to deliver more targeted feedback on the misconceptions exhibited by many students in their class, thus improving the quality of…
Descriptors: Data Analysis, Misconceptions, Student Attitudes, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boyer, Kristy Elizabeth, Ed.; Yudelson, Michael, Ed. – International Educational Data Mining Society, 2018
The 11th International Conference on Educational Data Mining (EDM 2018) is held under the auspices of the International Educational Data Mining Society at the Templeton Landing in Buffalo, New York. This year's EDM conference was highly competitive, with 145 long and short paper submissions. Of these, 23 were accepted as full papers and 37…
Descriptors: Data Collection, Data Analysis, Computer Science Education, Program Proposals
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis