Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 17 |
Since 2016 (last 10 years) | 47 |
Since 2006 (last 20 years) | 81 |
Descriptor
Source
Author
Publication Type
Education Level
Location
Brazil | 5 |
Australia | 3 |
Germany | 3 |
Arizona | 2 |
California | 2 |
China | 2 |
Florida | 2 |
Israel | 2 |
Japan | 2 |
Norway | 2 |
Pakistan | 2 |
More ▼ |
Laws, Policies, & Programs
Individuals with Disabilities… | 1 |
Assessments and Surveys
National Assessment of… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Galafassi, Cristiano; Galafassi, Fabiane Flores Penteado; Vicari, Rosa Maria; Reategui, Eliseo Berni – International Journal of Artificial Intelligence in Education, 2023
This work presents the intelligent tutoring system, EvoLogic, developed to assist students in problems of natural production in propositional logic. EvoLogic has been modeled as a multiagent system composed of three autonomous agents: interface, pedagogical and specialist agents. It supports pedagogical strategies inspired by the theory of…
Descriptors: Intelligent Tutoring Systems, Logical Thinking, Models, Teaching Methods
Wang, Tingting; Lajoie, Susanne P. – Educational Psychology Review, 2023
Although cognitive load (CL) and self-regulated learning (SRL) have been widely recognized as two determinant factors of students' performance, the integration of these two factors is still in its infancy. To further specify why and how CL links with SRL, we first conducted an overview to describe the multiple dimensions of cognitive load (i.e.,…
Descriptors: Cognitive Ability, Metacognition, Cognitive Processes, Correlation
Jesús Pérez; Eladio Dapena; Jose Aguilar – Education and Information Technologies, 2024
In tutoring systems, a pedagogical policy, which decides the next action for the tutor to take, is important because it determines how well students will learn. An effective pedagogical policy must adapt its actions according to the student's features, such as knowledge, error patterns, and emotions. For adapting difficulty, it is common to…
Descriptors: Feedback (Response), Intelligent Tutoring Systems, Reinforcement, Difficulty Level
Jionghao Lin; Shaveen Singh; Lela Sha; Wei Tan; David Lang; Dragan Gasevic; Guanliang Chen – Grantee Submission, 2022
To construct dialogue-based Intelligent Tutoring Systems (ITS) with sufficient pedagogical expertise, a trendy research method is to mine large-scale data collected by existing dialogue-based ITS or generated between human tutors and students to discover effective tutoring strategies. However, most of the existing research has mainly focused on…
Descriptors: Intelligent Tutoring Systems, Teaching Methods, Dialogs (Language), Man Machine Systems
Wijaya, Adi; Setiawan, Noor Akhmad; Shapiai, Mohd Ibrahim – Electronic Journal of e-Learning, 2023
This study aims to provide a comprehensive overview of the current state and potential future research in learning style detection. With the increasing number and diversity of research in this area, a quantitative approach is necessary to map out current themes and identify potential areas for future research. To achieve this goal, a bibliometric…
Descriptors: Bibliometrics, Cognitive Style, Diagnostic Tests, Content Analysis
Caruso, Megan; Peacock, Candace E.; Southwell, Rosy; Zhou, Guojing; D'Mello, Sidney K. – International Educational Data Mining Society, 2022
What can eye movements reveal about reading, a complex skill ubiquitous in everyday life? Research suggests that gaze can reflect short-term comprehension for facts, but it is unknown whether it can measure long-term, deep comprehension. We tracked gaze while 147 participants read long, connected, informative texts and completed assessments of…
Descriptors: Eye Movements, Reading Comprehension, Inferences, Prediction
Li, Xiao; Xu, Hanchen; Zhang, Jinming; Chang, Hua-hua – Journal of Educational and Behavioral Statistics, 2023
The adaptive learning problem concerns how to create an individualized learning plan (also referred to as a learning policy) that chooses the most appropriate learning materials based on a learner's latent traits. In this article, we study an important yet less-addressed adaptive learning problem--one that assumes continuous latent traits.…
Descriptors: Learning Processes, Models, Algorithms, Individualized Instruction
Rho, Jihyun; Rau, Martina A.; Van Veen, Barry D. – International Educational Data Mining Society, 2022
Instruction in many STEM domains heavily relies on visual representations, such as graphs, figures, and diagrams. However, students who lack representational competencies do not benefit from these visual representations. Therefore, students must learn not only content knowledge but also representational competencies. Further, as learning…
Descriptors: Learning Processes, Models, Introductory Courses, Engineering Education
Silvia García-Méndez; Francisco de Arriba-Pérez; Francisco J. González-Castaño – International Association for Development of the Information Society, 2023
Mobile learning or mLearning has become an essential tool in many fields in this digital era, among the ones educational training deserves special attention, that is, applied to both basic and higher education towards active, flexible, effective high-quality and continuous learning. However, despite the advances in Natural Language Processing…
Descriptors: Higher Education, Artificial Intelligence, Computer Software, Usability
Zhang, Mengxue; Wang, Zichao; Baraniuk, Richard; Lan, Andrew – International Educational Data Mining Society, 2021
Feedback on student answers and even during intermediate steps in their solutions to open-ended questions is an important element in math education. Such feedback can help students correct their errors and ultimately lead to improved learning outcomes. Most existing approaches for automated student solution analysis and feedback require manually…
Descriptors: Mathematics Instruction, Teaching Methods, Intelligent Tutoring Systems, Error Patterns
Linking Dialogue with Student Modelling to Create an Adaptive Tutoring System for Conceptual Physics
Katz, Sandra; Albacete, Patricia; Chounta, Irene-Angelica; Jordan, Pamela; McLaren, Bruce M.; Zapata-Rivera, Diego – International Journal of Artificial Intelligence in Education, 2021
Jim Greer and his colleagues argued that student modelling is essential to provide adaptive instruction in tutoring systems and showed that effective modelling is possible, despite being enormously challenging. Student modelling plays a prominent role in many intelligent tutoring systems (ITSs) that address problem-solving domains. However,…
Descriptors: Physics, Science Instruction, Pretests Posttests, Scores
The AI Teacher Test: Measuring the Pedagogical Ability of Blender and GPT-3 in Educational Dialogues
Tack, Anaïs; Piech, Chris – International Educational Data Mining Society, 2022
How can we test whether state-of-the-art generative models, such as Blender and GPT-3, are good AI teachers, capable of replying to a student in an educational dialogue? Designing an AI teacher test is challenging: although evaluation methods are much-needed, there is no off-the-shelf solution to measuring pedagogical ability. This paper reports…
Descriptors: Artificial Intelligence, Dialogs (Language), Bayesian Statistics, Decision Making
Chen, Guanliang; Ferreira, Rafael; Lang, David; Gasevic, Dragan – International Educational Data Mining Society, 2019
For the development of successful human-agent dialogue-based tutoring systems, it is essential to understand what makes a human-human tutorial dialogue successful. While there has been much research on dialogue-based intelligent tutoring systems, there have been comparatively fewer studies on analyzing large-scale datasets of human-human online…
Descriptors: Student Attitudes, Intelligent Tutoring Systems, Computer Software, Dialogs (Language)
Marilena Panaite; Mihai Dascalu; Amy Johnson; Renu Balyan; Jianmin Dai; Danielle S. McNamara; Stefan Trausan-Matu – Grantee Submission, 2018
Intelligent Tutoring Systems (ITSs) are aimed at promoting acquisition of knowledge and skills by providing relevant and appropriate feedback during students' practice activities. ITSs for literacy instruction commonly assess typed responses using Natural Language Processing (NLP) algorithms. One step in this direction often requires building a…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Algorithms, Decision Making
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
The ability to automatically assess the quality of paraphrases can be very useful for facilitating literacy skills and providing timely feedback to learners. Our aim is twofold: a) to automatically evaluate the quality of paraphrases across four dimensions: lexical similarity, syntactic similarity, semantic similarity and paraphrase quality, and…
Descriptors: Phrase Structure, Networks, Semantics, Feedback (Response)