Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 27 |
Since 2006 (last 20 years) | 35 |
Descriptor
Prediction | 35 |
Teaching Methods | 35 |
Intelligent Tutoring Systems | 32 |
Models | 16 |
Foreign Countries | 14 |
Data Analysis | 13 |
Accuracy | 12 |
Computer Software | 12 |
Academic Achievement | 11 |
Correlation | 10 |
Natural Language Processing | 10 |
More ▼ |
Source
Author
Albacete, Patricia | 2 |
Barnes, Tiffany | 2 |
Barnes, Tiffany, Ed. | 2 |
Chi, Min | 2 |
Chounta, Irene-Angelica | 2 |
Jordan, Pamela | 2 |
Katz, Sandra | 2 |
Mao, Ye | 2 |
McLaren, Bruce M. | 2 |
Zhi, Rui | 2 |
Allen, Laura K. | 1 |
More ▼ |
Publication Type
Reports - Research | 21 |
Journal Articles | 14 |
Speeches/Meeting Papers | 11 |
Collected Works - Proceedings | 8 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Dissertations/Theses -… | 1 |
Information Analyses | 1 |
Education Level
Audience
Location
Brazil | 3 |
China | 3 |
Spain (Madrid) | 3 |
France | 2 |
Germany | 2 |
Uruguay | 2 |
Afghanistan | 1 |
Asia | 1 |
Australia | 1 |
Canada (Toronto) | 1 |
Connecticut | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
Woodcock Johnson Tests of… | 1 |
What Works Clearinghouse Rating
David Roldan-Alvarez; Francisco J. Mesa – IEEE Transactions on Education, 2024
Artificial intelligence (AI) in programming teaching is something that still has to be explored, since in this area assessment tools that allow grading the students work are the most common ones, but there are not many tools aimed toward providing feedback to the students in the process of creating their program. In this work a small sized…
Descriptors: Intelligent Tutoring Systems, Grading, Artificial Intelligence, Feedback (Response)
Jionghao Lin; Shaveen Singh; Lela Sha; Wei Tan; David Lang; Dragan Gasevic; Guanliang Chen – Grantee Submission, 2022
To construct dialogue-based Intelligent Tutoring Systems (ITS) with sufficient pedagogical expertise, a trendy research method is to mine large-scale data collected by existing dialogue-based ITS or generated between human tutors and students to discover effective tutoring strategies. However, most of the existing research has mainly focused on…
Descriptors: Intelligent Tutoring Systems, Teaching Methods, Dialogs (Language), Man Machine Systems
Caruso, Megan; Peacock, Candace E.; Southwell, Rosy; Zhou, Guojing; D'Mello, Sidney K. – International Educational Data Mining Society, 2022
What can eye movements reveal about reading, a complex skill ubiquitous in everyday life? Research suggests that gaze can reflect short-term comprehension for facts, but it is unknown whether it can measure long-term, deep comprehension. We tracked gaze while 147 participants read long, connected, informative texts and completed assessments of…
Descriptors: Eye Movements, Reading Comprehension, Inferences, Prediction
Perrotta, Carlo; Selwyn, Neil – Learning, Media and Technology, 2020
In Applied AI, or 'machine learning', methods such as neural networks are used to train computers to perform tasks without human intervention. In this article, we question the applicability of these methods to education. In particular, we consider a case of recent attempts from data scientists to add AI elements to a handful of online learning…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Teaching Methods, Online Courses
Ni, Aohua; Cheung, Alan – Education and Information Technologies, 2023
Previous studies have demonstrated the effectiveness of intelligent tutoring systems (ITS) in facilitating English learning. However, no empirical research has been conducted on secondary students' intention to use ITSs in the language domain. This study proposes an extended technology acceptance model (TAM) to predict secondary students'…
Descriptors: Intelligent Tutoring Systems, English (Second Language), Second Language Learning, Second Language Instruction
Chen, Guanliang; Ferreira, Rafael; Lang, David; Gasevic, Dragan – International Educational Data Mining Society, 2019
For the development of successful human-agent dialogue-based tutoring systems, it is essential to understand what makes a human-human tutorial dialogue successful. While there has been much research on dialogue-based intelligent tutoring systems, there have been comparatively fewer studies on analyzing large-scale datasets of human-human online…
Descriptors: Student Attitudes, Intelligent Tutoring Systems, Computer Software, Dialogs (Language)
Lara Nieto-Márquez, Natalia; Baldominos, Alejandro; Pérez-Nieto, Miguel Ángel – Education Sciences, 2020
Metacognition is a construct that is noteworthy for its relationship with the prediction and enhancement of student performance. It is of interest in education, as well as in the field of cognitive psychology, because it contributes to competencies, such as learning to learn and the understanding of information. This study conducted research at a…
Descriptors: Metacognition, Elementary School Students, Measures (Individuals), Prediction
Whitehill, Jacob; Movellan, Javier – IEEE Transactions on Learning Technologies, 2018
We propose a method of generating teaching policies for use in intelligent tutoring systems (ITS) for concept learning tasks [1], e.g., teaching students the meanings of words by showing images that exemplify their meanings à la Rosetta Stone [2] and Duo Lingo [3]. The approach is grounded in control theory and capitalizes on recent work by [4],…
Descriptors: Intelligent Tutoring Systems, Second Language Learning, Educational Policy, Comparative Analysis
Roux, Lisa; Dagorret, Pantxika; Etcheverry, Patrick; Nodenot, Thierry; Marquesuzaa, Christophe; Lopisteguy, Philippe – International Association for Development of the Information Society, 2021
Distance computer-assisted learning is increasingly common, owing largely to the expansion and development of e-technology. Nevertheless, the available tools of the learning platforms have demonstrated their limits during the pandemic context, since many students, who were used to "face-to-face" education, got discouraged and dropped out…
Descriptors: Distance Education, Computer Software, Teacher Student Relationship, Supervision
Shi, Genghu; Lippert, Anne M.; Shubeck, Keith; Fang, Ying; Chen, Su; Pavlik, Philip, Jr.; Greenberg, Daphne; Graesser, Arthur C. – Grantee Submission, 2018
Reading comprehension is often assessed by having students read passages and administering a test that assesses their understanding of the text. Shorter assessments may fail to give a full picture of comprehension ability while more thorough ones can be time consuming and costly. This study used data from a conversational intelligent tutoring…
Descriptors: Reading Comprehension, Intelligent Tutoring Systems, Adults, Accuracy
Allen, Laura K.; Mills, Caitlin; Perret, Cecile; McNamara, Danielle S. – Grantee Submission, 2019
This study examines the extent to which instructions to self-explain vs. "other"-explain a text lead readers to produce different forms of explanations. Natural language processing was used to examine the content and characteristics of the explanations produced as a function of instruction condition. Undergraduate students (n = 146)…
Descriptors: Language Processing, Science Instruction, Computational Linguistics, Teaching Methods
Huang, Tao; Liang, Mengyi; Yang, Huali; Li, Zhi; Yu, Tao; Hu, Shengze – International Educational Data Mining Society, 2021
Influenced by COVID-19, online learning has become one of the most important forms of education in the world. In the era of intelligent education, knowledge tracing (KT) can provide excellent technical support for individualized teaching. For online learning, we come up with a new knowledge tracing method that integrates mathematical exercise…
Descriptors: Mathematics Instruction, Teaching Methods, Online Courses, Distance Education
Mao, Ye; Lin, Chen; Chi, Min – Journal of Educational Data Mining, 2018
Bayesian Knowledge Tracing (BKT) is a commonly used approach for student modeling, and Long Short Term Memory (LSTM) is a versatile model that can be applied to a wide range of tasks, such as language translation. In this work, we directly compared three models: BKT, its variant Intervention-BKT (IBKT), and LSTM, on two types of student modeling…
Descriptors: Prediction, Pretests Posttests, Bayesian Statistics, Short Term Memory
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming
Wang, Shuhan – ProQuest LLC, 2019
A common drawback in traditional language education is that all students in the same class use the same content. Since students may have different backgrounds such as prior knowledge and learning speed, one single curriculum may not be able to accommodate every student. Unfortunately, most students cannot afford personalized language learning,…
Descriptors: Second Language Learning, Second Language Instruction, Computer Assisted Instruction, Teaching Methods