NotesFAQContact Us
Collection
Advanced
Search Tips
Location
Georgia1
Turkey1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 23 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Cervantes Juárez, Erika; Sánchez Guzmán, Daniel – Physics Education, 2023
In many science and engineering undergraduate programmes, physics courses are fundamental and can be seen as a potential place where students can develop complementary abilities such as the computational thinking process. The present work proposes and describes the learning science and engineering with electronic spreadsheets cycle (LSEESC)…
Descriptors: Engineering Education, Spreadsheets, Science Education, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Elijah St. Germain – Journal of Chemical Education, 2025
Many approaches to teaching Newman projections and conformational manipulation rely on lecturing using only two-dimensional representations. While molecular models are recognized as useful learning tools, students are often left to figure out how to use them during the initial learning process. The availability of basic online molecular models…
Descriptors: Organic Chemistry, Science Instruction, Competency Based Education, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Dhanush S. Bejjarapu; Yize Chen; Jiyan Xu; Eric Shaffer; Nishant Garg – Journal of Chemical Education, 2024
Recent advancements in computer graphics and hardware have driven the resurgence of virtual reality (VR). Past literature has reported the use of VR in education, especially for teaching spatially complex concepts. However, there are limited data available on the precise role of VR game design elements. In this study, we introduce a new VR game,…
Descriptors: Physical Sciences, Chemistry, Computer Simulation, Educational Games
Peer reviewed Peer reviewed
Direct linkDirect link
Ferreira, Annalize; Seyffert, Albertus S.; Lemmer, Miriam – Physics Education, 2017
Many students find it difficult to apply certain physics concepts to their daily lives. This is especially true when they perceive a principle taught in physics class as being in conflict with their experience. An important instance of this occurs when students are instructed to ignore the effect of air resistance when solving kinematics problems.…
Descriptors: Computer Graphics, Scientific Concepts, Physics, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Heijnes, Dewi; van Joolingen, Wouter; Leenaars, Frank – Journal of Science Education and Technology, 2018
We investigate the way students' reasoning about evolution can be supported by drawing-based modeling. We modified the drawing-based modeling tool SimSketch to allow for modeling evolutionary processes. In three iterations of development and testing, students in lower secondary education worked on creating an evolutionary model. After each…
Descriptors: Logical Thinking, Evolution, Scientific Concepts, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Potratz, Jeffrey P. – Journal of Chemical Education, 2017
An interactive classroom demonstration that enhances students' knowledge of steady-state and Michaelis-Menten enzyme kinetics is described. The instructor uses a free version of professional-quality KinTek Explorer simulation software and student input to construct dynamic versions of three static hallmark images commonly used to introduce enzyme…
Descriptors: Biochemistry, Kinetics, Computer Simulation, Courseware
Peer reviewed Peer reviewed
Direct linkDirect link
Privat, Romain; Jaubert, Jean-Noe¨l; Berger, Etienne; Coniglio, Lucie; Lemaitre, Ce´cile; Meimaroglou, Dimitrios; Warth, Vale´rie – Journal of Chemical Education, 2016
Robust and fast methods for chemical or multiphase equilibrium calculation are routinely needed by chemical-process engineers working on sizing or simulation aspects. Yet, while industrial applications essentially require calculation tools capable of discriminating between stable and nonstable states and converging to nontrivial solutions,…
Descriptors: Energy Education, Power Technology, Scientific Concepts, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Lundquist, Karl; Herndon, Conner; Harty, Tyson H.; Gumbart, James C. – Biochemistry and Molecular Biology Education, 2016
It is often difficult for students to develop an intuition about molecular processes, which occur in a realm far different from day-to-day life. For example, thermal fluctuations take on hurricane-like proportions at the molecular scale. Students need a way to visualize realistic depictions of molecular processes to appreciate them. To this end,…
Descriptors: High School Students, Classroom Techniques, Molecular Structure, Computer Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Seker, Burcu Sezginsoy; Erdem, Aliye – Journal of Education and Training Studies, 2017
Students learning a defined subject only perform by learning of thinking based on the concepts forming that subjects. Otherwise, students may move away from the scientific meaning of concepts and may fall into conceptual errors. Students' conceptual errors affect their following learning and cause them resist change. It is possible to prevent this…
Descriptors: Lesson Plans, Models, Scientific Concepts, Concept Teaching
Peer reviewed Peer reviewed
Direct linkDirect link
Smiar, Karen; Mendez, J. D. – Journal of Chemical Education, 2016
Molecular model kits have been used in chemistry classrooms for decades but have seen very little recent innovation. Using 3D printing, three sets of physical models were created for a first semester, introductory chemistry course. Students manipulated these interactive models during class activities as a supplement to existing teaching tools for…
Descriptors: Molecular Structure, Computer Graphics, Printed Materials, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Glasser, Leslie – Journal of Chemical Education, 2014
We introduce various methods which are used to depict three-dimensional objects on two-dimensional surfaces. Many of these are artistic and not conducive to exact interpretation. Instead, the scientific and engineering practices and mathematics of orthographic projection are introduced, and illustrated in an accompanying interactive Excel…
Descriptors: Science Education, Illustrations, Computer Graphics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Casas, Lluís; Estop, Euge`nia – Journal of Chemical Education, 2015
Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…
Descriptors: Geometry, Models, Printing, Physical Sciences
Peer reviewed Peer reviewed
Direct linkDirect link
Magalha~es, Alexandre L. – Journal of Chemical Education, 2014
The advantages of Gaussian-type orbitals (GTO) over Slater-type orbitals (STO) in quantum chemistry calculations are clarified here by means of a holistic approach. The popular Microsoft Office Excel program was used to create an interactive application with which students are able to explore the features of GTO, including automatic calculations…
Descriptors: Holistic Approach, Quantum Mechanics, Chemistry, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
South, Andy – Primary Science, 2012
Creating charts and graphs is all about visual abstraction: the process of representing aspects of data with imagery that can be interpreted by the reader. Children may need help making the link between the "real" and the image. This abstraction can be achieved using symbols, size, colour and position. Where the representation is close to what…
Descriptors: Computer Graphics, Creativity, Elementary School Science, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Sutton, Kevin; Grubbs, Michael E.; Ernst, Jeremy – Technology and Engineering Teacher, 2014
Engineering design has been suggested as a viable instructional approach for Technology Education (TE) to intentionally provide students the opportunity to apply multidisciplinary concepts to solve ill-defined design challenges (Wells & Ernst, 2012; Sanders & Wells, 2010; Wicklein, 2006). Currently, the context for design challenges in TE…
Descriptors: Design, Design Crafts, Design Requirements, Engineering Technology
Previous Page | Next Page »
Pages: 1  |  2