NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers7
Laws, Policies, & Programs
Assessments and Surveys
Motivated Strategies for…1
What Works Clearinghouse Rating
Showing 1 to 15 of 51 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Meli, Kalliopi; Koliopoulos, Dimitrios; Lavidas, Konstantinos – Science & Education, 2022
Teaching and learning introductory thermodynamics has drawn considerable research attention over the last two decades, especially in several disciplines of higher education. Under particular investigation is the First Law of Thermodynamics (FLT), which offers an expression of energy conservation in thermodynamic systems, as the evidence shows that…
Descriptors: Thermodynamics, Science Instruction, Scientific Principles, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Gagnon, Michel – Physics Education, 2020
At the end of the 18th-century, Charles Coulomb developed an apparatus to study the force between two electrified beads which allowed him to obtain his famous Coulomb's law. Today, as one of the most fundamental outcomes in classical electromagnetism, his result is revisited in most high school physics courses, where students are asked to…
Descriptors: Physics, Science Instruction, Teaching Methods, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Saribas, Deniz – International Journal of Science Education, 2023
The reform documents point out the necessity of teaching the plurality of scientific method (SM) when scientists engage in scientific practices (SPs). The dramatic change in education due to COVID-19 pandemic necessitates examining the outcomes of online education, especially laboratory applications courses, which the students and educators used…
Descriptors: Online Courses, Science Education, Preservice Teacher Education, Video Technology
Jason Ward – ProQuest LLC, 2023
The subject of chemistry is a cornerstone of high school science programs and a conceptual understanding of chemical equilibria and Le Chatelier's Principle continues to be both a fundamental and paradoxically difficult subject for educators and students. This study evaluated the effectiveness of a prototype immersive virtual reality environment.…
Descriptors: Computer Simulation, Intervention, Chemistry, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Di Vincenzo, Antonella; Floriano, Michele A. – Journal of Chemical Education, 2020
An application for visualizing the dynamic properties of an equimolar binary mixture of isotropic reactive particles is presented. By introducing a user selectable choice for the activation energy, the application is useful to demonstrate qualitatively that the reaction rate depends on the above choice and on temperature. The application is based…
Descriptors: High School Students, Undergraduate Students, Molecular Structure, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V. – Physics Education, 2018
The article proposes a new research object for a general physics course--the vapour Cartesian diver, designed to study the properties of saturated water vapour. Physics education puts great importance on the study of the saturated vapour state, as it is related to many fundamental laws and theories. For example, the temperature dependence of the…
Descriptors: Physics, Heat, Thermodynamics, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Di Vincenzo, Antonella; Floriano, Michele A. – Journal of Chemical Education, 2019
An application for visualizing the aggregation of structureless atoms is presented. The application allows us to demonstrate on a qualitative basis, as well as by quantitatively monitoring the aggregate surface/volume ratio, that the enhanced reactivity of nanoparticles can be connected with their large specific surface. It is suggested that,…
Descriptors: Chemistry, Science Instruction, Molecular Structure, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Ament, Caitlin Marie; Graham, Theodore J. – Science Teacher, 2017
This article presents a unit of study in which students examine skeletons and draw conclusions from the evidence they find in a simulated mass grave. The activity involves the foundation of forensic anthropology--interpreting the structure of skeletal remains to determine sex, age, height, and possible cause of death. Working through a series of…
Descriptors: Science Instruction, Teaching Methods, Anthropology, Evidence
Peer reviewed Peer reviewed
Direct linkDirect link
Holly, Michael; Pirker, Johanna; Resch, Sebastian; Brettschuh, Sandra; Gütl, Christian – Educational Technology & Society, 2021
Skills in science, technology, engineering, and mathematics (STEM) are increasingly in demand. Theoretical knowledge and formulas alone are frequently not sufficient to understand complex phenomena. Simulations are a valuable tool to support the conceptual understanding by visualizing invisible processes. The constant interaction with the learning…
Descriptors: Instructional Design, STEM Education, Computer Simulation, Visualization
Peer reviewed Peer reviewed
Direct linkDirect link
Potratz, Jeffrey P. – Journal of Chemical Education, 2017
An interactive classroom demonstration that enhances students' knowledge of steady-state and Michaelis-Menten enzyme kinetics is described. The instructor uses a free version of professional-quality KinTek Explorer simulation software and student input to construct dynamic versions of three static hallmark images commonly used to introduce enzyme…
Descriptors: Biochemistry, Kinetics, Computer Simulation, Courseware
Peer reviewed Peer reviewed
Direct linkDirect link
Sweet, Chelsea; Akinfenwa, Oyewumi; Foley, Jonathan J., IV – Journal of Chemical Education, 2018
We present an interactive discovery-based approach to studying the properties of real gases using simple, yet realistic, molecular dynamics software. Use of this approach opens up a variety of opportunities for students to interact with the behaviors and underlying theories of real gases. Students can visualize gas behavior under a variety of…
Descriptors: Discovery Learning, Molecular Structure, Courseware, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Meyburg, Jan Philipp; Diesing, Detlef – Journal of Chemical Education, 2017
This article describes the implementation and application of a metal deposition and surface diffusion Monte Carlo simulation in a physical chemistry lab course. Here the self-diffusion of Ag atoms on a Ag(111) surface is modeled and compared to published experimental results. Both the thin-film homoepitaxial growth during adatom deposition onto a…
Descriptors: Monte Carlo Methods, Computer Simulation, Chemistry, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Heikkinen, Lasse; Savinainen, Antti; Saarelainen, Markku – Physics Teacher, 2016
The ray tracing method is widely used in teaching geometrical optics at the upper secondary and university levels. However, using simple and straightforward examples may lead to a situation in which students use the model of ray tracing too narrowly. Previous studies show that students seem to use the ray tracing method too concretely instead of…
Descriptors: Optics, Geometric Concepts, Secondary School Science, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Hati, Sanchita; Bhattacharyya, Sudeep – Biochemistry and Molecular Biology Education, 2016
A project-based biophysical chemistry laboratory course, which is offered to the biochemistry and molecular biology majors in their senior year, is described. In this course, the classroom study of the structure-function of biomolecules is integrated with the discovery-guided laboratory study of these molecules using computer modeling and…
Descriptors: Chemistry, Active Learning, Student Projects, Laboratory Training
Peer reviewed Peer reviewed
Direct linkDirect link
Lundquist, Karl; Herndon, Conner; Harty, Tyson H.; Gumbart, James C. – Biochemistry and Molecular Biology Education, 2016
It is often difficult for students to develop an intuition about molecular processes, which occur in a realm far different from day-to-day life. For example, thermal fluctuations take on hurricane-like proportions at the molecular scale. Students need a way to visualize realistic depictions of molecular processes to appreciate them. To this end,…
Descriptors: High School Students, Classroom Techniques, Molecular Structure, Computer Simulation
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4