Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 4 |
Descriptor
Algebra | 4 |
Algorithms | 4 |
Mathematics Instruction | 4 |
Teaching Methods | 4 |
Validity | 4 |
Anxiety | 3 |
Comparative Analysis | 3 |
Computer Assisted Instruction | 3 |
Computer Games | 3 |
Concept Formation | 3 |
Correlation | 3 |
More ▼ |
Author
Amisha Jindal | 3 |
Ashish Gurung | 3 |
Erin Ottmar | 3 |
Ji-Eun Lee | 3 |
Reilly Norum | 3 |
Sanika Nitin Patki | 3 |
Peter K. Dunn | 1 |
Robert G. McDougall | 1 |
Samuel B. Allan | 1 |
Publication Type
Reports - Research | 3 |
Journal Articles | 2 |
Reports - Descriptive | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Junior High Schools | 3 |
Middle Schools | 3 |
Secondary Education | 3 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Samuel B. Allan; Peter K. Dunn; Robert G. McDougall – International Journal of Mathematical Education in Science and Technology, 2024
In this note we demonstrate two instances where matrix multiplication can be easily verified. In the first setting, the matrix product appears as matrix element concatenation, and in the second, the product coincides with matrix addition. General proofs for some results are provided with a more complete description for 2×2 matrices. Suggested for…
Descriptors: Mathematics Instruction, Teaching Methods, Multiplication, Addition
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games