NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 46 to 60 of 303 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Çoban, A.; Erol, M. – Physics Education, 2019
This work reports a rudimentary approach to teach and measure the kinetic friction coefficient using a smartphone that can effectively be employed for teaching purposes. More specifically, the kinetic friction coefficient, which is rather difficult to teach and measure, between various surfaces was determined by two different approaches using the…
Descriptors: Kinetics, Physics, Motion, Science Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Conceição, Teresa; Baptista, Mónica; Ponte, João Pedro – Education Sciences, 2021
Multiple representations, such as experimental data, schemas, tables, and graphs, are an essential resource in science teaching. However, their use in the classroom typically poses a challenge for preservice teachers. The aim of this research is to examine changes in the practices of a group of preservice teachers regarding the use of multiple…
Descriptors: Science Instruction, Physics, Teaching Methods, Communities of Practice
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Samsudin, Achmad; Afif, Nur Faadhilah; Nugraha, Muhamad Gina; Suhandi, Andi; Fratiwi, Nuzulira Janeusse; Aminudin, Adam Hadiana; Adimayuda, Rizal; Linuwih, Suharto; Costu, Bayram – Journal of Turkish Science Education, 2021
This study aimed to expand PDEODE*E Tasks with the Think-Pair-Share model for reconstructing students' misconceptions on work and energy. The PDEODE*E Tasks with Think-Pair-Share model implemented for students who had not taught the concept of work and energy. The participants include 36 students of tenth grade (22 girls and 14 boys, whose ages…
Descriptors: Science Instruction, Scientific Concepts, Misconceptions, Energy
Lengel, Traci; Evans, Jenna – Corwin, 2019
There is no issue today that gets more attention and incites more debate than children's use of technology. Technology offers exciting new opportunities and challenges to you and your students. Meanwhile, movement is essential to learning--it increases mental energy and helps brain cells develop. But screen time often comes at the expense of…
Descriptors: Technology Uses in Education, Movement Education, Physical Activities, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Rodriguez, Jon-Marc G.; Bain, Kinsey; Hux, Nicholas P.; Towns, Marcy H. – Chemistry Education Research and Practice, 2019
Problem solving is a critical feature of highly quantitative physical science topics, such as chemical kinetics. In order to solve a problem, students must cue into relevant features, ignore irrelevant features, and choose among potential problem-solving approaches. However, what is considered appropriate or productive for problem solving is…
Descriptors: Science Instruction, Problem Solving, Chemistry, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Espindola, P. R.; Cena, C. R.; Alves, D. C. B.; Bozano, D. F.; Goncalves, A. M. B. – Physics Education, 2018
The study of buoyancy becomes very interesting when we measure the apparent weight of the body and the liquid vessel weight. In this paper, we propose an experimental apparatus that measures both the forces mentioned before as a function of the depth that a cylinder is sunk into the water. It is done using two load cells connected to an Arduino.…
Descriptors: Kinetics, Science Experiments, Scientific Concepts, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Gu, Jerry; Andreopoulos, Stavroula; Jenkinson, Jodie; Ng, Derek P. – Biochemistry and Molecular Biology Education, 2020
Enzyme kinetics is the study of enzymatic catalytic rates in biochemical reactions. This topic is commonly taught to life science students in introductory biochemistry courses during their undergraduate education. Unlike most other biochemistry topics, which focus on visual structures of biomolecules and their processes, enzyme kinetics is…
Descriptors: Biochemistry, Science Instruction, Undergraduate Students, Web Based Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Rodrigues Ventura, Daniel; Simeão de Carvalho, Paulo; Adriano Dias, Marco – Physics Teacher, 2017
The word "wave" is part of the daily language of every student. However, the physical understanding of the concept demands a high level of abstract thought. In physics, waves are oscillating variations of a physical quantity that involve the transfer of energy from one point to another, without displacement of matter. A wave can be…
Descriptors: Video Technology, Teaching Methods, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Manrique, Irany Vera; Gutiérrez, Gabriela Rivadeneyra; González, David Alejandro Martínez – Physics Teacher, 2019
This article describes an experiment that can be done in the classroom in a simple way, with the support of a "homemade" device or as a laboratory practice with the support of PASCO equipment. Through a theory-practice sequence, kinematic and dynamic equations were checked with qualitative and quantitative analysis, emphasizing the…
Descriptors: Teaching Methods, Computer Software, Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Bain, Kinsey; Rodriguez, Jon-Marc G.; Towns, Marcy H. – Journal of Chemical Education, 2019
The themes discussed in this study relate to how students reason about the information encoded in rate constants, which is important for developing a deep understanding of chemical kinetics at the molecular level. This study is part of a larger project centered more generally on students' understanding and use of mathematics in chemical kinetics.…
Descriptors: Science Instruction, Teaching Methods, Molecular Structure, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Sztrajman, Jorge; Sztrajman, Alejandro – Physics Teacher, 2017
The aim of this paper is to propose a method for solving head-on elastic collisions, without algebraic complications, to emphasize the use of the fundamental conservations laws. Head-on elastic collisions are treated in many physics textbooks as examples of conservation of momentum and kinetic energy.
Descriptors: Kinetics, Motion, Physics, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Ferreira, Annalize; Seyffert, Albertus S.; Lemmer, Miriam – Physics Education, 2017
Many students find it difficult to apply certain physics concepts to their daily lives. This is especially true when they perceive a principle taught in physics class as being in conflict with their experience. An important instance of this occurs when students are instructed to ignore the effect of air resistance when solving kinematics problems.…
Descriptors: Computer Graphics, Scientific Concepts, Physics, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Schubert, Frederic E. – Journal of Chemical Education, 2019
The cannon boring experiment of Count Rumford, where eight kilograms of water were boiled by metal on metal friction, is investigated. Consideration of this dramatic demonstration can enrich classroom discussions of calorimetry, units of measure, elements, and thermodynamics. A section pertaining to use of the article in the classroom appears…
Descriptors: Chemistry, Physics, Science Instruction, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
de Silva, Chamaree; Pullen, Jeffrey; Northcutt, Katharine; Jenkins, Jarred – Physics Teacher, 2019
Many university and high school introductory physics courses include a laboratory portion where students follow a manual to conduct "cookbook" experiments. Here, we present an authentic research project for introductory physics students that focuses on kinematics that can be done outside a formal laboratory space. This experiment can be…
Descriptors: Introductory Courses, Physics, Science Instruction, Laboratory Experiments
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Orr, Marisa K.; Jordan, Shawn S. – Advances in Engineering Education, 2019
Dynamics of Machine Elements is a junior-level course in mechanical engineering that covers the kinematics (motion) and kinetics (causes of motion) of machine elements such as linkages, cams, and gear trains. This paper describes the results of adding a Rube Goldberg Machine Contest® project to the course to address student concerns over the lack…
Descriptors: Teaching Methods, Motion, Kinetics, Equipment
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  21