Publication Date
| In 2026 | 0 |
| Since 2025 | 8 |
| Since 2022 (last 5 years) | 100 |
| Since 2017 (last 10 years) | 450 |
| Since 2007 (last 20 years) | 1149 |
Descriptor
| Science Experiments | 1953 |
| Teaching Methods | 1953 |
| Science Instruction | 1420 |
| College Science | 615 |
| Scientific Concepts | 577 |
| Chemistry | 571 |
| Science Education | 567 |
| Physics | 531 |
| Science Activities | 493 |
| Secondary School Science | 463 |
| Science Laboratories | 355 |
| More ▼ | |
Source
Author
| Gilbert, George L., Ed. | 13 |
| Cross, Rod | 9 |
| Kuntzleman, Thomas S. | 6 |
| Oss, S. | 6 |
| Gratton, L. M. | 5 |
| Hosking, Bunty | 5 |
| Planinsic, Gorazd | 5 |
| Renner, John W. | 5 |
| Roth, Wolff-Michael | 5 |
| Schlenker, Richard M. | 5 |
| Stocklmayer, Sue | 5 |
| More ▼ | |
Publication Type
Education Level
Audience
| Teachers | 425 |
| Practitioners | 401 |
| Researchers | 34 |
| Students | 32 |
| Administrators | 7 |
| Policymakers | 2 |
| Parents | 1 |
Location
| United Kingdom | 32 |
| Turkey | 19 |
| Germany | 17 |
| Australia | 16 |
| China | 14 |
| United Kingdom (Great Britain) | 12 |
| Massachusetts | 10 |
| Canada | 9 |
| Italy | 9 |
| United Kingdom (England) | 9 |
| California | 8 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 2 |
| Americans with Disabilities… | 1 |
| Education for All Handicapped… | 1 |
| Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Klassen, Stephen – Interchange: A Quarterly Review of Education, 2006
It is well established that thought experiments are both scientifically and philosophically significant, and even that they are pedagogically significant. However, the basis and methodology for their pedagogical use is not as well established. Pedagogical thought experiments are defined as mental simulations with special features to isolate…
Descriptors: Science Experiments, Instructional Effectiveness, Literary Genres, Science Instruction
Briggs, Thomas E.; Sanders, Scott T. – Journal of Chemical Education, 2006
Lecture-based experimental methods that include topics ranging from basic signal processing to the proper use of thermocouples to advanced optical techniques such as laser-induced fluorescence are described. The data obtained from this demonstration could be provided to the students in digital form to obtain useful engineering results such as an…
Descriptors: Electromechanical Technology, Optics, Spectroscopy, Science Experiments
Childs, Gregory – Science and Children, 2007
In sixth grade, students understand that Earth gets visible light from the Sun, but students may also believe the Earth gets heat from the Sun. This last part is incorrect because the Sun is too far from the Earth to heat it directly. So, how does the Sun heat the Earth? When light strikes an object, it can be reflected or absorbed. Absorbed light…
Descriptors: Grade 6, Investigations, Educational Technology, Technology Integration
Hume, Anne; Coll, Richard – International Journal of Science Education, 2008
This paper reports on the reality of classroom-based inquiry learning in science, from the perspectives of high school students and their teachers, under a national curriculum attempting to encourage authentic scientific inquiry (as practiced by scientists). A multiple case study approach was taken, utilising qualitative research methods of…
Descriptors: National Curriculum, Science Teachers, Science Instruction, Science Experiments
Vanko, Peter – European Journal of Physics, 2007
First-year physics students at the Technical University of Budapest carry out a wide range of measurements in the Basic Level Physics Teaching Laboratory. One of the most exciting experiments is the investigation of a chaotic double pendulum by a V-scope, a powerful three-dimensional motion tracking system. After a brief introduction to the…
Descriptors: Investigations, Physics, Laboratory Equipment, Data Analysis
DiCecco, J.; Wu, J.; Kuwasawa, K.; Sun, Y. – Advances in Physiology Education, 2007
It is challenging for biomedical engineering programs to incorporate an indepth study of the systemic interdependence of cells, tissues, and organs into the rigorous mathematical curriculum that is the cornerstone of engineering education. To be sure, many biomedical engineering programs require their students to enroll in anatomy and physiology…
Descriptors: Physiology, Science Education, College Students, Engineering Education
Dori, Yehudit J.; Sasson, Irit – Journal of Research in Science Teaching, 2008
The case-based computerized laboratory (CCL) is a chemistry learning environment that integrates computerized experiments with emphasis on scientific inquiry and comprehension of case studies. The research objective was to investigate chemical understanding and graphing skills of high school honors students via bidirectional visual and textual…
Descriptors: Graphs, Chemistry, Science Laboratories, Foreign Countries
Hiebert, Clyde – 1992
For various reasons, students do not have access to laboratory facilities and yet need courses in the laboratory sciences such as chemistry. This paper describes "Outreach Chemistry," a course developed to provide a chemistry laboratory experience for students attending schools that lack science laboratories. Designed for off-campus students whose…
Descriptors: Chemistry, Curriculum Development, Higher Education, Instructional Innovation
Fleer, Marilyn – 1991
Young children in Australia enter early childhood education settings eager to make sense of the world that surrounds them. Their interest in every day experiences is evident in the range of questions asked, many of which are scientific in nature. Intended as a resource for adults working with 4-to 8-year-old children, this booklet provides an…
Descriptors: Early Childhood Education, Electric Circuits, Electricity, Foreign Countries
Colicchia, Giuseppe; Wiesner, Hartmut – Physics Teacher, 2006
One way to motivate students' interest in physics is to teach it in the context of medicine. Optics, for example, can be taught with examples from the eye. For many years simple optics of lenses has been taught using a model of the eye. However, recent advances in using lasers for ophthalmological (ocular) examinations can be used to increase…
Descriptors: Optics, Lasers, Measurement, Physics
Pedrosa, Cristiana; Mendes, Joaquim; Magalhaes, Fernao D. – Chemical Engineering Education, 2006
A low-cost tensile testing machine was built for testing polymeric films. This apparatus also allows for tear-strength and flexural tests. The experimental results, obtained from common-use materials, selected by the students, such as plastic bags, illustrate important aspects of the mechanical behavior of polymeric materials. Some of the tests…
Descriptors: Science Instruction, Plastics, Chemical Engineering, Laboratory Equipment
Randall, James E. – Physiologist, 1978
Describes the use of a small digital computer to simulate a peripheral nerve demonstration in which the action potential responses to pairs of stimuli are used to illustrate the properties of excitable membranes. (Author/MA)
Descriptors: Biology, Computer Assisted Instruction, Digital Computers, Higher Education
Marchewka, Barbara Turco – Teacher, 1978
This science teacher's laboratory is a pond within walking distance of his school that provides a stimulating environment for exploring the natural world. With simple materials students practice making careful observations, taking measurements and compiling and graphing information for their science studies. They also extend their pond experiences…
Descriptors: Elementary Education, Elementary School Science, Environmental Education, Learning Activities
Peer reviewedWolf, Walter A., Ed. – Journal of Chemical Education, 1977
Presents classroom and laboratory teaching and demonstration ideas, including a demonstration of optical rotation, automatic potentiometric titration, preparation of radioactive lead, and an organic lab practical in library resources. (SL)
Descriptors: Chemistry, College Science, Demonstrations (Educational), Higher Education
Peer reviewedTorres, N. V.; And Others – Biochemical Education, 1988
Presents a practical exercise that enables students to measure flux control coefficients in a metabolic pathway in vitro, to verify the summation property, and to compare the differences in the distribution of these coefficients in different steady states. Discusses background, materials, methods, and results of the activity. (CW)
Descriptors: Biochemistry, College Science, Higher Education, Laboratory Procedures

Direct link
