NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 2 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Emerson, Andrew; Rodríguez, Fernando J.; Mott, Bradford; Smith, Andy; Min, Wookhee; Boyer, Kristy Elizabeth; Smith, Cody; Wiebe, Eric; Lester, James – International Educational Data Mining Society, 2019
Recent years have seen a growing interest in block-based programming environments for computer science education. While these environments hold significant potential for novice programmers, they lack the adaptive support necessary to accommodate students exhibiting a wide range of initial capabilities and dispositions toward computing. A promising…
Descriptors: Programming, Computer Science Education, Feedback (Response), Prediction
Paquette, Luc; Rowe, Jonathan; Baker, Ryan; Mott, Bradford; Lester, James; DeFalco, Jeanine; Brawner, Keith; Sottilare, Robert; Georgoulas, Vasiliki – International Educational Data Mining Society, 2016
Computational models that automatically detect learners' affective states are powerful tools for investigating the interplay of affect and learning. Over the past decade, affect detectors--which recognize learners' affective states at run-time using behavior logs and sensor data--have advanced substantially across a range of K-12 and postsecondary…
Descriptors: Models, Affective Behavior, Intelligent Tutoring Systems, Games