Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 10 |
Descriptor
College Science | 10 |
Technology Uses in Education | 10 |
Visualization | 10 |
Science Instruction | 8 |
Scientific Concepts | 6 |
Undergraduate Study | 6 |
Chemistry | 5 |
Educational Technology | 5 |
Teaching Methods | 5 |
Molecular Structure | 4 |
Computer Software | 3 |
More ▼ |
Author
Publication Type
Journal Articles | 10 |
Reports - Descriptive | 6 |
Reports - Evaluative | 2 |
Reports - Research | 2 |
Education Level
Higher Education | 9 |
Postsecondary Education | 7 |
Secondary Education | 2 |
High Schools | 1 |
Audience
Teachers | 1 |
Location
Wisconsin | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Christopher T. Jurgenson – Journal of Chemical Education, 2022
Structures of 10 proteins from the Protein Data Bank were 3D printed as part of an undergraduate biochemistry teaching laboratory. All structures were successfully printed in either a space filling surface representation or a cartoon representation that traces the Ca carbon atoms of each amino acid residue. All structures were printed using…
Descriptors: Printing, Models, Visualization, Biochemistry
Mitchell, Miguel O. – Journal of Chemical Education, 2018
Although the potent effects of cation-p interactions for stabilizing protein structure and binding ligands to proteins have been reported in the chemical literature for over two decades, there are no undergraduate biochemistry textbooks covering this important noncovalent attractive force. In an attempt to remedy this situation, this primer…
Descriptors: Science Instruction, College Science, Undergraduate Study, Web Based Instruction
Lucas, Krista L. – Science Activities: Projects and Curriculum Ideas in STEM Classrooms, 2021
Molecular processes are highly complex, and are frequently difficult for high school and college students to comprehend. Because of the importance of visualization in learning, along with formative assessment of student understanding, utilization of 3D modeling software aids both educators and students alike. The activity described below required…
Descriptors: Molecular Biology, Science Instruction, Teaching Methods, Scientific Concepts
Hawley, Scott H.; McClain, Robert E., Jr. – Physics Teacher, 2018
When Yang-Hann Kim received the Rossing Prize in Acoustics Education at the 2015 meeting of the Acoustical Society of America, he stressed the importance of offering visual depictions of sound fields when teaching acoustics. Often visualization methods require specialized equipment such as microphone arrays or scanning apparatus. We present a…
Descriptors: Physics, Acoustics, Visualization, Telecommunications
Smith, Garon C.; Hossain, Md Mainul – Journal of Chemical Education, 2017
Species TOPOS is a free software package for generating three-dimensional (3-D) topographic surfaces ("topos") for acid-base equilibrium studies. This upgrade adds 3-D species distribution topos to earlier surfaces that showed pH and buffer capacity behavior during titration and dilution procedures. It constructs topos by plotting…
Descriptors: Computer Software, Science Instruction, Educational Technology, Technology Uses in Education
Mahaffy, Peter G.; Holme, Thomas A.; Martin-Visscher, Leah; Martin, Brian E.; Versprille, Ashley; Kirchhoff, Mary; McKenzie, Lallie; Town, Marcy – Journal of Chemical Education, 2017
As one approach to moving beyond transmitting "inert" ideas to chemistry students, we use the term "teaching from rich contexts" to describe implementations of case studies or context-based learning based on systems thinking that provide deep and rich opportunities for learning crosscutting concepts through contexts. This…
Descriptors: Science Instruction, Chemistry, Climate, Cognitive Skills
Higman, Carolyn S.; Situ, Henry; Blacklin, Peter; Hein, Jason E. – Journal of Chemical Education, 2017
Advances in 3D printing technology over the past decade have led to its expansion into all subfields of science, including chemistry. This technology provides useful teaching tools that facilitate communication of difficult chemical concepts to students and researchers. Presented here is the use of 3D printing technology to create tangible models…
Descriptors: Undergraduate Study, College Science, Chemistry, Hands on Science
Tang, Hui; Abraham, Michael R. – Journal of Chemical Education, 2016
Computer-based simulations can help students visualize chemical representations and understand chemistry concepts, but simulations at different levels of representation may vary in effectiveness on student learning. This study investigated the influence of computer activities that simulate chemical reactions at different levels of representation…
Descriptors: Science Education, Computer Simulation, Teaching Methods, Technology Uses in Education
Teplukhin, Alexander; Babikov, Dmitri – Journal of Chemical Education, 2015
In our three-dimensional world, one can plot, see, and comprehend a function of two variables at most, V(x,y). One cannot plot a function of three or more variables. For this reason, visualization of the potential energy function in its full dimensionality is impossible even for the smallest polyatomic molecules, such as triatomics. This creates…
Descriptors: Science Instruction, Visualization, Energy, College Science
Meyer, Scott C. – Journal of Chemical Education, 2015
An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…
Descriptors: College Science, Undergraduate Study, Science Laboratories, Science Experiments