NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 27 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ivaylo Staribratov; Nikol Manolova – Discover Education, 2024
The article presents the application of 3D technologies in STEAM education through a conducted scientific research, highlighting the role of 3D modeling and 3D printing as an innovative approach in achieving an interdisciplinary learning model. The research included the following stages: preparation for designing a detailed 3D steam locomotive…
Descriptors: Art Education, STEM Education, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Jinga, Maria-Ruxandra; Lee, Rachel B. Y.; Chan, Kai Lok; Marway, Prabhvir S.; Nandapalan, Krishan; Rhode, Kawal; Kui, Christopher; Lee, Matthew – Anatomical Sciences Education, 2023
Three-dimensional (3D) segmentation, a process involving digitally marking anatomical structures on cross-sectional images such as computed tomography (CT), and 3D printing (3DP) are being increasingly utilized in medical education. Exposure to this technology within medical schools and hospitals remains limited in the United Kingdom. M3dicube UK,…
Descriptors: Computer Simulation, Computer Peripherals, Printing, Anatomy
Peer reviewed Peer reviewed
Direct linkDirect link
H. Martin; E. Eisner; J. K. Klosterman – Journal of Chemical Education, 2023
3D printers have facilitated a wealth of 3D printed molecular models illustrating key structural concepts for student learning. However, general adoption of 3D printed models in the organic chemistry classroom proceeds slowly as the majority of consumer-grade 3D (fused deposition modeling (FDM) and resin) printers are inherently monochromatic,…
Descriptors: Printing, Computer Peripherals, Molecular Structure, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Kuen-Yi; Lu, Shao-Chuan; Hsiao, Hsien-Hsien; Kao, Chia-Pin; Williams, P. John – Interactive Learning Environments, 2023
Over the past few years, digital fabrication has been utilized in technology laboratories to emphasize hands-on learning processes in technology and engineering education. Recent studies indicate that hands-on activities can help students connect with science, technology, engineering, and mathematics (STEM) disciplines and develop key skills…
Descriptors: STEM Education, Imagination, Vocational Interests, Repetition
Peer reviewed Peer reviewed
Direct linkDirect link
Jones, Oliver A. H.; Stevenson, Paul G.; Hameka, Simone C.; Osborne, Dale A.; Taylor, Patrick D.; Spencer, Michelle J. S. – Journal of Chemical Education, 2021
The use of three-dimensional printing in chemistry education has expanded greatly in the past 10 years. The technique has been used to demonstrate a range of concepts including molecular structure, orbitals, and point groups; to produce chemical equipment such as cuvettes and columns; and even to print out mathematical shapes and functions. Here,…
Descriptors: Science Instruction, Chemistry, Spectroscopy, Printing
Peer reviewed Peer reviewed
Direct linkDirect link
Nguyen-Dang Minh Phuc; Huynh Tan Thanh Tam – International Journal for Technology in Mathematics Education, 2024
Mathematics education often grapples with the challenge of teaching abstract mathematical concepts, particularly those existing in 3D space. Visualizing, manipulating, and comprehending these abstract objects can be a formidable task for learners. While 3D printing technology has found applications in various fields, its utilization in mathematics…
Descriptors: High Schools, Technology Uses in Education, Computation, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Andic, Branko; Ulbrich, Eva; Dana-Picard, Thierry; Cvjeticanin, Stanko; Petrovic, Filip; Lavicza, Zsolt; Maricic, Mirjana – Journal of Science Education and Technology, 2023
There is a large amount of research that indicates that the use of 3DMP in STEM education improves students' knowledge, motivation, and participation in the learning process. Nevertheless, despite the existing attempts to market 3DMP in education, its adoption in schools remains low. A number of studies with teachers in secondary schools and…
Descriptors: STEM Education, Teacher Attitudes, Teaching Methods, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Christopher T. Jurgenson – Journal of Chemical Education, 2022
Structures of 10 proteins from the Protein Data Bank were 3D printed as part of an undergraduate biochemistry teaching laboratory. All structures were successfully printed in either a space filling surface representation or a cartoon representation that traces the Ca carbon atoms of each amino acid residue. All structures were printed using…
Descriptors: Printing, Models, Visualization, Biochemistry
Simpson, A. Chloe; Taliaferro, Andrea Ruth – TEACHING Exceptional Children, 2021
While assistive technology is often suggested as a way to increase, maintain, or improve functional ability for individuals with disabilities within physical activity (PA) settings, cost and availability of such items are often noted as barriers. In recent years, 3D printing has become available to the general public through the adoption of 3D…
Descriptors: Assistive Technology, Students with Disabilities, Adapted Physical Education, Printing
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling – Anatomical Sciences Education, 2018
Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the…
Descriptors: Anatomy, Animals, Models, Computer Peripherals
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Suchman, Erica L.; McLean, Jennifer; Denham, Steven T.; Shatila, Dana; Prowel, David – HAPS Educator, 2018
We used 3D printing to manufacture models that allow students to explore antibody-epitope interactions. One of the more difficult concepts for students in general microbiology and immunology courses is visualizing the interactions surrounding antibodies and the multiple epitopes found on antigens. We designed and printed antibodies that recognize…
Descriptors: Models, Printing, Microbiology, Lecture Method
Peer reviewed Peer reviewed
Direct linkDirect link
Smith, Michelle L.; Jones, James F. X. – Anatomical Sciences Education, 2018
Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex[superscript 3D] flexible filament and polylactic acid (PLA)…
Descriptors: Computer Peripherals, Printing, Technology Uses in Education, Anatomy
Peer reviewed Peer reviewed
Direct linkDirect link
Fujiwara, Yujiro – Technology and Engineering Teacher, 2018
While many students may struggle to make sense of a mathematical formula and its practical implications, they can benefit greatly from an intuitive visualization and the engineering application of the topic. Effective STEM programs create clear connections at least with two subject areas, which translates into an enhanced student learning…
Descriptors: STEM Education, Computer Assisted Instruction, Models, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
Wan, Anna; Ivy, Jessica – Journal of Digital Learning in Teacher Education, 2021
This article condenses five years of professional development based on Technological Pedagogical and Content Knowledge (TPACK) integration principles, National Council of Teachers of Mathematics Principles to Actions (2014), and ISTE Student and Teacher standards to give a launch point for teachers and teacher educators to integrate 3D modeling…
Descriptors: Computer Assisted Design, Mathematics Education, Mathematics Teachers, Teacher Education Programs
Peer reviewed Peer reviewed
Direct linkDirect link
Mogali, Sreenivasulu Reddy; Yeong, Wai Yee; Tan, Heang Kuan Joel; Tan, Gerald Jit Shen; Abrahams, Peter H.; Zary, Nabil; Low-Beer, Naomi; Ferenczi, Michael Alan – Anatomical Sciences Education, 2018
For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the…
Descriptors: Medical Students, Student Evaluation, Computer Peripherals, Printing
Previous Page | Next Page ยป
Pages: 1  |  2