Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 11 |
Descriptor
Computer Peripherals | 11 |
Scientific Concepts | 11 |
Technology Uses in Education | 11 |
Science Instruction | 9 |
Chemistry | 6 |
Educational Technology | 6 |
Molecular Structure | 6 |
Printing | 6 |
Hands on Science | 5 |
Teaching Methods | 5 |
College Science | 3 |
More ▼ |
Source
Journal of Chemical Education | 6 |
Biochemistry and Molecular… | 1 |
Chemistry Education Research… | 1 |
International Association for… | 1 |
Journal of Science Education… | 1 |
Physics Education | 1 |
Author
Abby M. Thornhill | 1 |
Asquith, Christopher R. M. | 1 |
Blauch, David N. | 1 |
Cao, Zi Jing | 1 |
Carroll, Felix A. | 1 |
Celeste N. Peterson | 1 |
Derek J. Bischoff | 1 |
Hilton, Stephen T. | 1 |
Huanyu Ren | 1 |
Huihui Li | 1 |
Isabel N. Smith | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 6 |
Reports - Descriptive | 5 |
Information Analyses | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 5 |
Postsecondary Education | 3 |
Secondary Education | 3 |
High Schools | 2 |
Elementary Education | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Huanyu Ren; Jiajun Zhang; Liqi Peng; Huihui Li; Zhi Su – Journal of Chemical Education, 2023
This work presents a homemade multirole 3D-printed modular spectrometer(MPMS), which can be easily assembled like bricks and expanded with several modules to measure different types of spectra, such as UV-vis absorption, fluorescence emission, flame emission/absorption, glow discharge, and even Raman spectra. The spectrometer is designed to be…
Descriptors: Printing, Computer Peripherals, Technology Uses in Education, Spectroscopy
Melanie B. Berkmen; Melisa Balla; Mikayla T. Cavanaugh; Isabel N. Smith; Misael Eduardo Flores-Artica; Abby M. Thornhill; Julia C. Lockart; Celeste N. Peterson – Biochemistry and Molecular Biology Education, 2025
Biochemistry and molecular biology students are asked to understand and analyze the structures of small molecules and complex three-dimensional (3D) macromolecules. However, most tools to help students learn molecular visualization skills are limited to two-dimensional (2D) images on screens and in textbooks. The virtual reality (VR) App Nanome,…
Descriptors: Technology Uses in Education, Computer Simulation, Computer Oriented Programs, Science Instruction
Derek J. Bischoff; Michael E. Mackay; Sheldon A. Hewlett – Journal of Chemical Education, 2024
Upper-division undergraduate students are introduced to polymer processing using material extrusion fused filament fabrication 3D printing to make poly(lactic acid) (PLA) mechanical testing specimens. Computer aided design and slicing software packages are used to demonstrate the process of preparing 3D computer models for printing. Following the…
Descriptors: Plastics, Mathematical Models, Printing, Computer Peripherals
LeSuer, Robert J. – Journal of Chemical Education, 2019
Consumer-grade manufacturing tools such as 3D printers are becoming increasingly prevalent in STEM education environments, especially as tools to develop inexpensive, tactile visualization models. Presented here is a workflow for creating 3D-printed periodic tables displaying a variety of trends from traditionally taught relationships such as…
Descriptors: Educational Technology, Hands on Science, Printed Materials, Computer Peripherals
Woo, Yura; Ju, Young-Gu – Physics Education, 2019
In this paper, we present the details of the development of a smartphone spectrometer for education using a 3D printer and characterized the performance by comparison with a paper craft spectrometer. The optical design and the narrow slit used in the build resulted in the formation of accurate images of the slit on the image sensor leading to a…
Descriptors: Telecommunications, Handheld Devices, Educational Technology, Technology Uses in Education
Koehler, Karen E.; Wild, Tiffany A.; Tikkun, Sean – Journal of Science Education for Students with Disabilities, 2018
This article presents the results of a study on the use of 3-D printed models in a science classroom for students with visual impairments and examines whether the use of these models impacts student conceptual understanding and misconceptions related to geosciences concepts, specifically plate tectonics. Data were collected one week prior to…
Descriptors: Science Instruction, Visual Impairments, Educational Technology, Technology Uses in Education
Stansell, Alicia; Tyler-Wood, Tandra; Stansell, Christina – International Association for Development of the Information Society, 2016
The reverse engineering of simple inventions that were of historic significance is now possible in a classroom by using digital models provided by places like the Smithsonian. The digital models can facilitate the mastery of students' STEM learning by utilizing digital fabrication in maker spaces to provide an opportunity for reverse engineer and…
Descriptors: STEM Education, Manufacturing, Scientific Concepts, Mathematical Concepts
Penny, Matthew R.; Cao, Zi Jing; Patel, Bhaven; dos Santos, Bruno Sil; Asquith, Christopher R. M.; Szulc, Blanka R.; Rao, Zenobia X.; Muwaffak, Zaid; Malkinson, John P.; Hilton, Stephen T. – Journal of Chemical Education, 2017
Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models…
Descriptors: Organic Chemistry, Science Instruction, Scientific Concepts, Educational Technology
Scalfani, Vincent F.; Vaid, Thomas P. – Journal of Chemical Education, 2014
Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…
Descriptors: Computer Peripherals, Educational Technology, Technology Uses in Education, Science Instruction
Blauch, David N.; Carroll, Felix A. – Journal of Chemical Education, 2014
A 3D printer is used to prepare a variety of models representing potential energy as a function of two geometric coordinates. These models facilitate the teaching of structure-energy relationships in molecular conformations and in chemical reactions.
Descriptors: Computer Peripherals, Educational Technology, Technology Uses in Education, Energy
Warfa, Abdi-Rizak M.; Roehrig, Gillian H.; Schneider, Jamie L.; Nyachwaya, James – Chemistry Education Research and Practice, 2014
A significant body of the literature in science education examines students' conceptions of the dissolution of ionic solids in water, often showing that students lack proper understanding of the particulate nature of dissolving materials as well as holding numerous misconceptions about the dissolution process. Consequently, chemical educators have…
Descriptors: Chemistry, Science Instruction, Classroom Communication, Computer Peripherals