NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Weicong Lyu; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Data harmonization is an emerging approach to strategically combining data from multiple independent studies, enabling addressing new research questions that are not answerable by a single contributing study. A fundamental psychometric challenge for data harmonization is to create commensurate measures for the constructs of interest across…
Descriptors: Data Analysis, Test Items, Psychometrics, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Chengyu Cui; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Multidimensional item response theory (MIRT) models have generated increasing interest in the psychometrics literature. Efficient approaches for estimating MIRT models with dichotomous responses have been developed, but constructing an equally efficient and robust algorithm for polytomous models has received limited attention. To address this gap,…
Descriptors: Item Response Theory, Accuracy, Simulation, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Patton, Jeffrey M.; Cheng, Ying; Hong, Maxwell; Diao, Qi – Journal of Educational and Behavioral Statistics, 2019
In psychological and survey research, the prevalence and serious consequences of careless responses from unmotivated participants are well known. In this study, we propose to iteratively detect careless responders and cleanse the data by removing their responses. The careless responders are detected using person-fit statistics. In two simulation…
Descriptors: Test Items, Response Style (Tests), Identification, Computation
Soysal, Sümeyra; Arikan, Çigdem Akin; Inal, Hatice – Online Submission, 2016
This study aims to investigate the effect of methods to deal with missing data on item difficulty estimations under different test length conditions and sampling sizes. In this line, a data set including 10, 20 and 40 items with 100 and 5000 sampling size was prepared. Deletion process was applied at the rates of 5%, 10% and 20% under conditions…
Descriptors: Research Problems, Data Analysis, Item Response Theory, Test Items
Custer, Michael – Online Submission, 2015
This study examines the relationship between sample size and item parameter estimation precision when utilizing the one-parameter model. Item parameter estimates are examined relative to "true" values by evaluating the decline in root mean squared deviation (RMSD) and the number of outliers as sample size increases. This occurs across…
Descriptors: Sample Size, Item Response Theory, Computation, Accuracy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yalcin, Seher – Eurasian Journal of Educational Research, 2018
Purpose: Studies in the literature have generally demonstrated that the causes of differential item functioning (DIF) are complex and not directly related to defined groups. The purpose of this study is to determine the DIF according to the mixture item response theory (MixIRT) model, based on the latent group approach, as well as the…
Descriptors: Item Response Theory, Test Items, Test Bias, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Gómez-Benito, Juana; Hidalgo, Maria Dolores; Zumbo, Bruno D. – Educational and Psychological Measurement, 2013
The objective of this article was to find an optimal decision rule for identifying polytomous items with large or moderate amounts of differential functioning. The effectiveness of combining statistical tests with effect size measures was assessed using logistic discriminant function analysis and two effect size measures: R[superscript 2] and…
Descriptors: Item Analysis, Test Items, Effect Size, Statistical Analysis
Diakow, Ronli Phyllis – ProQuest LLC, 2013
This dissertation comprises three papers that propose, discuss, and illustrate models to make improved inferences about research questions regarding student achievement in education. Addressing the types of questions common in educational research today requires three different "extensions" to traditional educational assessment: (1)…
Descriptors: Inferences, Educational Assessment, Academic Achievement, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Irene R. R.; Thomas, D. Roland – Structural Equation Modeling: A Multidisciplinary Journal, 2008
This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…
Descriptors: Least Squares Statistics, Computation, Item Response Theory, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Enders, Craig K. – Educational and Psychological Measurement, 2004
A method for incorporating maximum likelihood (ML) estimation into reliability analyses with item-level missing data is outlined. An ML estimate of the covariance matrix is first obtained using the expectation maximization (EM) algorithm, and coefficient alpha is subsequently computed using standard formulae. A simulation study demonstrated that…
Descriptors: Intervals, Simulation, Test Reliability, Computation
Ban, Jae-Chun; Hanson, Bradley A.; Yi, Qing; Harris, Deborah J. – 2002
The purpose of this study was to compare and evaluate three online pretest item calibration/scaling methods in terms of item parameter recovery when the item responses to the pretest items in the pool would be sparse. The three methods considered were the marginal maximum likelihood estimate with one EM cycle (OEM) method, the marginal maximum…
Descriptors: Adaptive Testing, Computer Assisted Testing, Data Analysis, Error of Measurement
Carlson, James E.; Spray, Judith A. – 1986
This paper discussed methods currently under study for use with multiple-response data. Besides using Bonferroni inequality methods to control type one error rate over a set of inferences involving multiple response data, a recently proposed methodology of plotting the p-values resulting from multiple significance tests was explored. Proficiency…
Descriptors: Cutting Scores, Data Analysis, Difficulty Level, Error of Measurement