NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Morey, Richard D.; Rouder, Jeffrey N. – Psychological Methods, 2011
Psychological theories are statements of constraint. The role of hypothesis testing in psychology is to test whether specific theoretical constraints hold in data. Bayesian statistics is well suited to the task of finding supporting evidence for constraint, because it allows for comparing evidence for 2 hypotheses against each another. One issue…
Descriptors: Evidence, Intervals, Testing, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Kuiper, Rebecca M.; Hoijtink, Herbert – Psychological Methods, 2010
This article discusses comparisons of means using exploratory and confirmatory approaches. Three methods are discussed: hypothesis testing, model selection based on information criteria, and Bayesian model selection. Throughout the article, an example is used to illustrate and evaluate the two approaches and the three methods. We demonstrate that…
Descriptors: Models, Testing, Hypothesis Testing, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Bentler, Peter M.; Satorra, Albert – Psychological Methods, 2010
When using existing technology, it can be hard or impossible to determine whether two structural equation models that are being considered may be nested. There is also no routine technology for evaluating whether two very different structural models may be equivalent. A simple nesting and equivalence testing (NET) procedure is proposed that uses…
Descriptors: Structural Equation Models, Testing, Simulation, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Keselman, H. J.; Miller, Charles W.; Holland, Burt – Psychological Methods, 2011
There have been many discussions of how Type I errors should be controlled when many hypotheses are tested (e.g., all possible comparisons of means, correlations, proportions, the coefficients in hierarchical models, etc.). By and large, researchers have adopted familywise (FWER) control, though this practice certainly is not universal. Familywise…
Descriptors: Validity, Statistical Significance, Probability, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Keselman, H. J.; Algina, James; Lix, Lisa M.; Wilcox, Rand R.; Deering, Kathleen N. – Psychological Methods, 2008
Standard least squares analysis of variance methods suffer from poor power under arbitrarily small departures from normality and fail to control the probability of a Type I error when standard assumptions are violated. This article describes a framework for robust estimation and testing that uses trimmed means with an approximate degrees of…
Descriptors: Intervals, Testing, Least Squares Statistics, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Tryon, Warren W.; Lewis, Charles – Psychological Methods, 2008
Evidence of group matching frequently takes the form of a nonsignificant test of statistical difference. Theoretical hypotheses of no difference are also tested in this way. These practices are flawed in that null hypothesis statistical testing provides evidence against the null hypothesis and failing to reject H[subscript 0] is not evidence…
Descriptors: Intervals, Testing, Effect Size, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
MacCallum, Robert C.; Browne, Michael W.; Cai, Li – Psychological Methods, 2006
For comparing nested covariance structure models, the standard procedure is the likelihood ratio test of the difference in fit, where the null hypothesis is that the models fit identically in the population. A procedure for determining statistical power of this test is presented where effect size is based on a specified difference in overall fit…
Descriptors: Testing, Models, Statistical Analysis, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Stoel, Reinoud D.; Garre, Francisca Galindo; Dolan, Conor; van den Wittenboer, Godfried – Psychological Methods, 2006
The authors show how the use of inequality constraints on parameters in structural equation models may affect the distribution of the likelihood ratio test. Inequality constraints are implicitly used in the testing of commonly applied structural equation models, such as the common factor model, the autoregressive model, and the latent growth…
Descriptors: Testing, Structural Equation Models, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Wen-Chung; Chen, Po-Hsi; Cheng, Ying-Yao – Psychological Methods, 2004
A conventional way to analyze item responses in multiple tests is to apply unidimensional item response models separately, one test at a time. This unidimensional approach, which ignores the correlations between latent traits, yields imprecise measures when tests are short. To resolve this problem, one can use multidimensional item response models…
Descriptors: Item Response Theory, Test Items, Testing, Test Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Bauer, Daniel J.; Preacher, Kristopher J.; Gil, Karen M. – Psychological Methods, 2006
The authors propose new procedures for evaluating direct, indirect, and total effects in multilevel models when all relevant variables are measured at Level 1 and all effects are random. Formulas are provided for the mean and variance of the indirect and total effects and for the sampling variances of the average indirect and total effects.…
Descriptors: Testing, Models, Sampling, Context Effect