NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lourdes Anglada; María C. Cañadas; Bárbara M. Brizuela – International Journal of Science and Mathematics Education, 2025
The aim of this study was to determine how 5-year-old children identified the functional relationship of correspondence, and whether or not they generalized when working on a task that involved programmable robots. We conducted this study with 15 children (9 girls and 6 boys) in their last year of preschool education. The study was designed around…
Descriptors: Robotics, Preschool Children, Programming, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Çakiroglu, Ünal; Çevik, Isak – Education and Information Technologies, 2022
In order to teach Computational Thinking (CT) skills to young students, Block-Based Programming Environments (BBPEs) are integrated into secondary school computer science (CS) education curricula. As a CT skill, abstraction is one of the prominent skills, which is difficult to enhance and measure. Researchers developed some scales for measuring…
Descriptors: Computation, Thinking Skills, Computer Science Education, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mirolo, Claudio; Izu, Cruz; Lonati, Violetta; Scapin, Emanuele – Informatics in Education, 2021
When we "think like a computer scientist," we are able to systematically solve problems in different fields, create software applications that support various needs, and design artefacts that model complex systems. Abstraction is a soft skill embedded in all those endeavours, being a main cornerstone of computational thinking. Our…
Descriptors: Computer Science Education, Soft Skills, Thinking Skills, Abstract Reasoning
Peer reviewed Peer reviewed
Direct linkDirect link
Silvia Wen-Yu Lee; Jyh-Chong Liang; Chung-Yuan Hsu; Meng-Jung Tsai – Interactive Learning Environments, 2024
While research has shown that students' epistemic beliefs can be a strong predictor of their academic performance, cognitive abilities, or self-efficacy, studies of this topic in computer education are rare. The purpose of this study was twofold. First, it aimed to validate a newly developed questionnaire for measuring students' epistemic beliefs…
Descriptors: Student Attitudes, Beliefs, Computer Science Education, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Ezeamuzie, Ndudi O.; Leung, Jessica S. C.; Ting, Fridolin S. T. – Journal of Educational Computing Research, 2022
Although abstraction is widely understood to be one of the primary components of computational thinking, the roots of abstraction may be traced back to different fields. Hence, the meaning of abstraction in the context of computational thinking is often confounded, as researchers interpret abstraction through diverse lenses. To disentangle these…
Descriptors: Computer Science Education, Thinking Skills, Research Reports, Abstract Reasoning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kusaka, Satoshi – Journal of Education and Learning, 2021
Information and Communication Technology (ICT) education has been actively implemented around the world recently. ICT curriculum in schools is intended to improve students' programming-oriented thinking rather than to train them as programmers. The core of ICT education is 'computational thinking'. Computational thinking is taking an approach to…
Descriptors: Cross Cultural Studies, Thinking Skills, Information Technology, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Miller, Jodie – ZDM: The International Journal on Mathematics Education, 2019
Cross-curricula opportunities afforded by STEM education (Science, Technology, Engineering and Mathematics education), supports an environment where students can develop twenty-first century competencies. One approach to addressing cross-curricula opportunities in STEM education is the introduction of computer science (computer…
Descriptors: STEM Education, Interdisciplinary Approach, Thinking Skills, Coding
Goldenson, Dennis – 1996
The assertion that "higher order" thinking skills can be improved by learning to program computers is not a new one. The idea endures even though the empirical evidence over the years has been mixed at best. In fact, there is no reason to expect that all programming courses will have identical, or even similar, effects. Such courses typically…
Descriptors: Academic Achievement, Authoring Aids (Programming), Computer Software, Computers