ERIC Number: EJ1263599
Record Type: Journal
Publication Date: 2020-Jul
Pages: 11
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0021-9584
EISSN: N/A
Available Date: N/A
Exploring Student Thinking about Addition Reactions
Finkenstaedt-Quinn, Solaire A.; Watts, Field M.; Petterson, Michael N.; Archer, Sabrina R.; Snyder-White, Emma P.; Shultz, Ginger V.
Journal of Chemical Education, v97 n7 p1852-1862 Jul 2020
Organic chemistry is a required course sequence for many STEM students. However, research indicates that organic chemistry reaction mechanisms are especially challenging for students due to a mixture of underlying conceptual difficulties, the process-oriented thinking inherent to the discipline, and the representations commonly used to depict mechanisms. While student reasoning about many of the reaction types covered in the organic chemistry curriculum has been studied previously, there is minimal research focused specifically on how students think about the mechanisms of addition reactions. Understanding students' conceptions about addition reactions is valuable for both instructors and researchers, as these reactions are among the first for which students must consider different chemical properties to make a decision about alternate reaction pathways. This study provides insight into how students think about these reactions by probing first semester organic chemistry students' thinking using think-aloud interviews as they worked through two addition reactions. To elicit a range of thinking, students worked through the mechanisms using either paper and pencil or an app that dynamically represents the molecules. Generally, students were able to identify the steps of the two addition reactions but did not always successfully apply chemical thinking during the mechanistic steps. Most prominently, both groups of students struggled with the concepts related to carbocation stability, frequently misapplying stabilization via substitution and demonstrating difficulty in identifying the potential for resonance stabilization. Our results suggest that instructors should emphasize the conceptual grounding that directs mechanistic steps, in particular when determining carbocation stability. More generally, our findings suggest that instructors must emphasize the skill of considering and weighing different chemical properties when making decisions about alternative reaction pathways.
Descriptors: Thinking Skills, College Students, Organic Chemistry, College Science, Science Process Skills, Protocol Analysis, Science Instruction
Division of Chemical Education, Inc. and ACS Publications Division of the American Chemical Society. 1155 Sixteenth Street NW, Washington, DC 20036. Tel: 800-227-5558; Tel: 202-872-4600; e-mail: eic@jce.acs.org; Web site: http://pubs.acs.org/jchemeduc
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A