Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 6 |
Descriptor
Algorithms | 6 |
Classification | 6 |
Undergraduate Students | 6 |
Artificial Intelligence | 3 |
Learning Analytics | 3 |
Prediction | 3 |
Accuracy | 2 |
Bayesian Statistics | 2 |
Computer Software | 2 |
Data Analysis | 2 |
Decision Making | 2 |
More ▼ |
Source
Education and Information… | 3 |
International Journal of… | 1 |
Journal of Chemical Education | 1 |
Journal of Statistics and… | 1 |
Author
Alanah Grant St. James | 1 |
Andrew F. Worrall | 1 |
Annabel S. J. Brunt | 1 |
Claire Vallance | 1 |
Dalia Khairy | 1 |
Khatibi, Toktam | 1 |
Liwen Song | 1 |
Luke Hand | 1 |
Makram Soui | 1 |
Malcolm I. Stewart | 1 |
Marwa F. Areed | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Research | 5 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 6 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Alanah Grant St. James; Luke Hand; Thomas Mills; Liwen Song; Annabel S. J. Brunt; Patrick E. Bergstrom Mann; Andrew F. Worrall; Malcolm I. Stewart; Claire Vallance – Journal of Chemical Education, 2023
Applications of machine learning in chemistry are many and varied, from prediction of structure-property relationships, to modeling of potential energy surfaces for large scale atomistic simulations. We describe a generalized approach for the application of machine learning to the classification of spectra which can be used as the basis for a wide…
Descriptors: Artificial Intelligence, Chemistry, Science Instruction, Classification
Dalia Khairy; Nouf Alharbi; Mohamed A. Amasha; Marwa F. Areed; Salem Alkhalaf; Rania A. Abougalala – Education and Information Technologies, 2024
Student outcomes are of great importance in higher education institutions. Accreditation bodies focus on them as an indicator to measure the performance and effectiveness of the institution. Forecasting students' academic performance is crucial for every educational establishment seeking to enhance performance and perseverance of its students and…
Descriptors: Prediction, Tests, Scores, Information Retrieval
Nesrine Mansouri; Mourad Abed; Makram Soui – Education and Information Technologies, 2024
Selecting undergraduate majors or specializations is a crucial decision for students since it considerably impacts their educational and career paths. Moreover, their decisions should match their academic background, interests, and goals to pursue their passions and discover various career paths with motivation. However, such a decision remains…
Descriptors: Undergraduate Students, Decision Making, Majors (Students), Specialization
Qing Wang; Xizhen Cai – Journal of Statistics and Data Science Education, 2024
Support vector classifiers are one of the most popular linear classification techniques for binary classification. Different from some commonly seen model fitting criteria in statistics, such as the ordinary least squares criterion and the maximum likelihood method, its algorithm depends on an optimization problem under constraints, which is…
Descriptors: Active Learning, Class Activities, Classification, Artificial Intelligence
Parhizkar, Amirmohammad; Tejeddin, Golnaz; Khatibi, Toktam – Education and Information Technologies, 2023
Increasing productivity in educational systems is of great importance. Researchers are keen to predict the academic performance of students; this is done to enhance the overall productivity of educational system by effectively identifying students whose performance is below average. This universal concern has been combined with data science…
Descriptors: Algorithms, Grade Point Average, Interdisciplinary Approach, Prediction
de Carvalho, Walisson Ferreira; Zárate, Luis Enrique – International Journal of Information and Learning Technology, 2021
Purpose: The paper aims to present a new two stage local causal learning algorithm -- HEISA. In the first stage, the algorithm discoveries the subset of features that better explains a target variable. During the second stage, computes the causal effect, using partial correlation, of each feature of the selected subset. Using this new algorithm,…
Descriptors: Causal Models, Algorithms, Learning Analytics, Correlation