NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rebeckah K. Fussell; Megan Flynn; Anil Damle; Michael F. J. Fox; N. G. Holmes – Physical Review Physics Education Research, 2025
Recent advancements in large language models (LLMs) hold significant promise for improving physics education research that uses machine learning. In this study, we compare the application of various models for conducting a large-scale analysis of written text grounded in a physics education research classification problem: identifying skills in…
Descriptors: Physics, Computational Linguistics, Classification, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Lafuente, Deborah; Cohen, Brenda; Fiorini, Guillermo; Garci´a, Agusti´n Alejo; Bringas, Mauro; Morzan, Ezequiel; Onna, Diego – Journal of Chemical Education, 2021
Machine learning, a subdomain of artificial intelligence, is a widespread technology that is molding how chemists interact with data. Therefore, it is a relevant skill to incorporate into the toolbox of any chemistry student. This work presents a workshop that introduces machine learning for chemistry students based on a set of Python notebooks…
Descriptors: Undergraduate Students, Chemistry, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gitinabard, Niki; Gao, Zhikai; Heckman, Sarah; Barnes, Tiffany; Lynch, Collin F. – Journal of Educational Data Mining, 2023
Few studies have analyzed students' teamwork (pairwork) habits in programming projects due to the challenges and high cost of analyzing complex, long-term collaborative processes. In this work, we analyze student teamwork data collected from the GitHub platform with the goal of identifying specific pair teamwork styles. This analysis builds on an…
Descriptors: Cooperative Learning, Computer Science Education, Programming, Student Projects
Peer reviewed Peer reviewed
Direct linkDirect link
Yun Huang; Christian Dieter Schunn; Julio Guerra; Peter L. Brusilovsky – ACM Transactions on Computing Education, 2024
Programming skills are increasingly important to the current digital economy, yet these skills have long been regarded as challenging to acquire. A central challenge in learning programming skills involves the simultaneous use of multiple component skills. This article investigates why students struggle with integrating component skills--a…
Descriptors: Programming, Computer Science Education, Error Patterns, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Thrall, Elizabeth S.; Lee, Seung Eun; Schrier, Joshua; Zhao, Yijun – Journal of Chemical Education, 2021
Techniques from the branch of artificial intelligence known as machine learning (ML) have been applied to a wide range of problems in chemistry. Nonetheless, there are very few examples of pedagogical activities to introduce ML to chemistry students in the chemistry education literature. Here we report a computational activity that introduces…
Descriptors: Undergraduate Students, Artificial Intelligence, Man Machine Systems, Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
Direct linkDirect link
Gerbing, David W. – Journal of Statistics and Data Science Education, 2021
R and Python are commonly used software languages for data analytics. Using these languages as the course software for the introductory course gives students practical skills for applying statistical concepts to data analysis. However, the reliance upon the command line is perceived by the typical nontechnical introductory student as sufficiently…
Descriptors: Statistics Education, Teaching Methods, Introductory Courses, Programming Languages
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Karnalim, Oscar – Themes in Science and Technology Education, 2017
This paper empirically enlists Python plagiarism attacks that have been found on Introductory Programming course assignments for undergraduate students. According to our observation toward 400 plagiarism-suspected cases, there are 35 plagiarism attacks that have been conducted by students. It starts with comment & whitespace modification as…
Descriptors: Plagiarism, Introductory Courses, Programming Languages, Taxonomy