NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Priya Yadav; Harshita Laddha; Madhu Agarwal; Ragini Gupta – Journal of Chemical Education, 2022
A smartphone-based digital imaging method has been successfully introduced in an undergraduate laboratory class to quantify fluoride ions in water. Students first synthesized the chemosensor (E)-2-(1-(6-nitro-2-oxo-2H-chromen-3-yl)ethylidene)-N-phenylhydrazine-1-carbothioamide (CT) via an eco-friendly and green microwave-assisted protocol and…
Descriptors: Handheld Devices, Telecommunications, Educational Technology, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Marc A. Zambri; John R. De Backere – Journal of Chemical Education, 2024
Molecular symmetry and orbitals are two important chemical concepts which can be difficult for students to visualize in three dimensions; as such, instructors have traditionally adopted a variety of approaches to teach them including the use of physical models and digital renderings/resources. This paper describes a new mobile device application…
Descriptors: Molecular Structure, Science Education, Chemistry, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Underwood, Bret; Zhai, Yunxiao – Physics Teacher, 2016
Smartphones and tablets are packed with sensors that allow us to take experimental data, essentially making them mobile physics labs. Apps exist that make it easy to capture and analyze data from these sensors, allowing users to study diverse phenomena such as free fall acceleration, the speed of sound,radioactivity, and many others. Commonly, the…
Descriptors: Handheld Devices, Computer Oriented Programs, Physics, Time