Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 11 |
Descriptor
Chemical Engineering | 11 |
Computer Software | 11 |
Undergraduate Students | 11 |
Engineering Education | 10 |
Teaching Methods | 6 |
Student Attitudes | 5 |
Computer Simulation | 3 |
Case Studies | 2 |
Computation | 2 |
Concept Formation | 2 |
Course Content | 2 |
More ▼ |
Source
Chemical Engineering Education | 7 |
Advances in Engineering… | 1 |
European Journal of… | 1 |
Interactive Learning… | 1 |
Research in Science Education | 1 |
Author
Publication Type
Journal Articles | 11 |
Reports - Research | 7 |
Reports - Descriptive | 3 |
Tests/Questionnaires | 2 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 11 |
Postsecondary Education | 10 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Dray, Kate E.; Dreyer, Kathleen S.; Lucks, Julius B.; Leonard, Joshua N. – Chemical Engineering Education, 2023
We present an educational unit to teach computational modeling, a vital part of chemical engineering curricula, through the lens of synthetic biology. Lectures, code, and homework questions provide conceptual and practical introductions to each computational method involved in the model development process, along with perspectives on how methods…
Descriptors: Engineering Education, Chemical Engineering, Teaching Methods, Units of Study
Bale, Shivkumar; Singh, Ramesh – Interactive Learning Environments, 2023
This paper introduces a novel virtual method to conduct continuous distillation experiment in an undergraduate unit operation laboratory with the help of SPM 700 Distillation Column, one of the modules available in Simtronics, a commercial process operation simulator. Simtronics simulator is a powerful tool to teach process industry skills and it…
Descriptors: Engineering Education, Teaching Methods, Undergraduate Students, Laboratory Experiments
Mingheng Li – Chemical Engineering Education, 2024
Project-based learning (PBL) empowers students to become active learners. In this work computational reverse osmosis (RO) projects developed from industrial case studies and research were implemented in several chemical engineering courses to enhance student learning experience. Students not only gained knowledge in water treatment, but also…
Descriptors: Chemical Engineering, Engineering Education, Learning Experience, Student Projects
Mohammad Heshmati; W. David Purvis – Chemical Engineering Education, 2024
Three real-world datasets are introduced for a petroleum engineering capstone design course, providing detailed problem statements, assessment criteria, team-building practices, and required software packages. Two surveys reveal that students prefer real datasets over synthetic ones, and despite initial challenges, students feel proud of their…
Descriptors: Chemical Engineering, Engineering Education, Fuels, Capstone Experiences
Chapman, Kayla E.; Davidson, Megan E.; Liberatore, Matthew W. – Chemical Engineering Education, 2021
Student success and attempts on hundreds of online homework problems housed in a fully interactive online textbook, Material and Energy Balances zyBook, were studied over three cohorts of students (n=284). Auto-graded homework questions with randomized numbers and content can explore proficiency in the course material. Students are allowed to…
Descriptors: Energy, Homework, Science Instruction, Textbooks
Shao, Michael; Shiflett, Mark B. – Chemical Engineering Education, 2021
Simulation software has experienced growing interest in chemical engineering curriculums for its usage in commercial engineering practices. This article describes the ASPEN Plus® version 10 (V10) simulations and a student teach students approach to integrate ASPEN in the chemical engineering curriculum at the University of Kansas (KU). Videos,…
Descriptors: Chemical Engineering, Teaching Methods, Computer Simulation, Computer Software
Glover, T. Grant; Cloutier, Robert; Gill, Tracy R. – Chemical Engineering Education, 2018
In collaboration with NASA, the Space Grant Foundation, and the eXploration Habitat Academic Challenge, the University of South Alabama developed a systems engineering undergraduate elective that instructs students on the fundamentals of systems engineering and provides the students the opportunity to apply systems and chemical engineering…
Descriptors: Engineering Education, Chemical Engineering, Elective Courses, Scientific Concepts
Battaglia, Onofrio Rosario; Di Paola, Benedetto; Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio – Research in Science Education, 2019
Two 20-h modelling-based workshops focused on the explanation of thermally activated phenomena were held at the University of Palermo, Italy, during the Academic Year 2014-2015. One of them was conducted by applying an inquiry-based approach, while the other, still based on laboratory and modelling activities, was not focused on inquiry.…
Descriptors: Workshops, Engineering Education, Chemical Engineering, Undergraduate Students
Ghasem, Nayef – European Journal of Engineering Education, 2016
This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes…
Descriptors: Teaching Methods, Learning Processes, Cooperative Learning, Educational Quality
Asensio, Daniela A.; Barassi, Francisca J.; Zambon, Mariana T.; Mazza, Germán D. – Advances in Engineering Education, 2010
This paper describes the results of a pedagogical experience carried out at the University of Comahue, Argentina, with an interactive text (IT) concerning Homogeneous Chemical Reactors Analysis. The IT was built on the frame of the "Mathematica" software with the aim of providing students with a robust computational tool. Students'…
Descriptors: Foreign Countries, Chemical Engineering, Engineering Education, Chemistry
Joo, Yong Lak; Choudhary, Devashish – Chemical Engineering Education, 2006
For decades, every chemical engineer has been asked to have a background in separations. The required separations course can, however, be uninspiring and superficial because understanding many separation processes involves conventional graphical methods and commercial process simulators. We utilize simple, user-friendly mathematical software,…
Descriptors: Visualization, Computation, Chemical Engineering, Engineering Education