NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
ACT Assessment1
What Works Clearinghouse Rating
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zareen Alamgir; Habiba Akram; Saira Karim; Aamir Wali – Informatics in Education, 2024
Educational data mining is widely deployed to extract valuable information and patterns from academic data. This research explores new features that can help predict the future performance of undergraduate students and identify at-risk students early on. It answers some crucial and intuitive questions that are not addressed by previous studies.…
Descriptors: Data Analysis, Information Retrieval, Content Analysis, Information Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Paul Joseph-Richard; James Uhomoibhi – INFORMS Transactions on Education, 2024
Scholarly interests in developing personalized learning analytics dashboards (LADs) in universities have been increasing. LADs are data visualization tools for both teachers and learners that allow them to support student success and improve teaching and learning. In most LADs, however, a teacher-centric, institutional view drives their designs,…
Descriptors: Learning Analytics, Learning Management Systems, Independent Study, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Prat, Alain; Code, Warren J. – International Journal of Mathematical Education in Science and Technology, 2021
The online homework system WeBWorK has been successfully used at several hundred colleges and universities. Despite its popularity, the WeBWorK system does not provide detailed metrics of student performance to instructors. In this article, we illustrate how an analysis of the log files of the WeBWorK system can provide information such as the…
Descriptors: Data Analysis, Homework, Student Behavior, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yiqiu Zhou; Jina Kang – Journal of Learning Analytics, 2023
Collaboration is a complex, multidimensional process; however, details of how multimodal features intersect and mediate group interactions have not been fully unpacked. Characterizing and analyzing the temporal patterns based on multimodal features is a challenging yet important work to advance our understanding of computer-supported collaborative…
Descriptors: Attention Control, Cooperative Learning, Data Analysis, Computer Assisted Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zualkernan, Imran – International Association for Development of the Information Society, 2021
A significant amount of research has gone into predicting student performance and many studies have been conducted to predict why students drop out. A variety of data including digital footprints, socio-economic data, financial data, and psychological aspects have been used to predict student performance at the test, course, or program level.…
Descriptors: Prediction, Engineering Education, Academic Achievement, Dropouts
Peer reviewed Peer reviewed
Direct linkDirect link
Parhizkar, Amirmohammad; Tejeddin, Golnaz; Khatibi, Toktam – Education and Information Technologies, 2023
Increasing productivity in educational systems is of great importance. Researchers are keen to predict the academic performance of students; this is done to enhance the overall productivity of educational system by effectively identifying students whose performance is below average. This universal concern has been combined with data science…
Descriptors: Algorithms, Grade Point Average, Interdisciplinary Approach, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
de Carvalho, Walisson Ferreira; Zárate, Luis Enrique – International Journal of Information and Learning Technology, 2021
Purpose: The paper aims to present a new two stage local causal learning algorithm -- HEISA. In the first stage, the algorithm discoveries the subset of features that better explains a target variable. During the second stage, computes the causal effect, using partial correlation, of each feature of the selected subset. Using this new algorithm,…
Descriptors: Causal Models, Algorithms, Learning Analytics, Correlation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Saqr, Mohammed; López-Pernas, Sonsoles – Journal of Learning Analytics, 2022
There has been extensive research using centrality measures in educational settings. One of the most common lines of such research has tested network centrality measures as indicators of success. The increasing interest in centrality measures has been kindled by the proliferation of learning analytics. Previous works have been dominated by…
Descriptors: Measurement Techniques, Learning Analytics, Data Analysis, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Khosravi, Hassan; Shabaninejad, Shiva; Bakharia, Aneesha; Sadiq, Shazia; Indulska, Marta; Gasevic, Dragan – Journal of Learning Analytics, 2021
Learning analytics dashboards commonly visualize data about students with the aim of helping students and educators understand and make informed decisions about the learning process. To assist with making sense of complex and multidimensional data, many learning analytics systems and dashboards have relied strongly on AI algorithms based on…
Descriptors: Learning Analytics, Visual Aids, Artificial Intelligence, Information Retrieval
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Edwards, John; Hart, Kaden; Shrestha, Raj – Journal of Educational Data Mining, 2023
Analysis of programming process data has become popular in computing education research and educational data mining in the last decade. This type of data is quantitative, often of high temporal resolution, and it can be collected non-intrusively while the student is in a natural setting. Many levels of granularity can be obtained, such as…
Descriptors: Data Analysis, Computer Science Education, Learning Analytics, Research Methodology
Ilci, Ahmet – ProQuest LLC, 2020
Privacy and surveillance are pervasive words not only in higher education but also in many areas in our life. We use and hear them often while shopping online, reading the news, or checking the policies and terms of websites. In this study, I highlight the challenges of data collection and surveillance in education, specifically, in online…
Descriptors: Privacy, Information Security, Case Studies, Undergraduate Students