NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 147 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
ScottP. Buzzolani; Matthew J. Mistretta; Aleksandra E. Bugajczyk; Arun J. Sam; Samantha R. Elezi; Daniel L. Silverio – Journal of Chemical Education, 2025
The ability to extract structural information from a drawing of a molecule is key to being successful in organic chemistry. One source of difficulty for novices in interpreting structures is that hydrogens bound to carbon are represented implicitly in the often-used line-angle structures. Other representations that explicitly show hydrogens, such…
Descriptors: Undergraduate Students, Science Instruction, Chemistry, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Juan Carlos Vega-Garzón; Duverney Chaverra-Rodriguez – Biochemistry and Molecular Biology Education, 2025
The COVID-19 pandemic affected a large range of in-person education activities in Colombia. This created great limitations in academic performance for students with reduced access to communication technologies and deepened the educational gaps in the country. This was particularly true for sciences such as biochemistry. In Colombia, molecular…
Descriptors: Handicrafts, Molecular Structure, Biology, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Guangjie Yan; Yuteng Zhang; Alexis Allamprese; Kameron N. Brooks; Wenkai Chen; Shudan Yan; Tai-Yen Chen – Journal of Chemical Education, 2024
Single-molecule localization microscopy (SMLM) has revolutionized our ability to visualize cellular structures, offering unprecedented detail. However, the intricate biophysical principles that underlie SMLM can be daunting for newcomers, particularly undergraduate and graduate students. To address this challenge, we introduce the fundamental…
Descriptors: Molecular Structure, Chemistry, Science Instruction, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Matovu, Henry; Won, Mihye; Treagust, David Franklin; Mocerino, Mauro; Ungu, Dewi Ayu Kencana; Tsai, Chin-Chung; Tasker, Roy – Chemistry Education Research and Practice, 2023
Recent studies have reported a growing trend of using student-generated diagrams for assessment in science teaching and research. However, many educators tend to use diagrams to explore students' perceptions of scientists and their work rather than explore conceptual understanding of abstract concepts. In this study, we used diagrams to…
Descriptors: Science Instruction, Molecular Structure, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Suzanne Ruder; Courtney Stanford; Nuha Farhat; Leslie Bolda – Journal of College Science Teaching, 2024
Students need a strong understanding of how to represent chemical compounds in order to succeed in organic chemistry. This project set out to gain a better understanding of students' difficulties with symbolic representations, by identifying the specific errors associated with drawing wedge-dash structures. The focus was on how students…
Descriptors: Undergraduate Students, Chemistry, Science Instruction, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Dongju Zhang – Journal of Chemical Education, 2023
This review describes a computational chemistry exercise aimed at enhancing the understanding of upper-division undergraduates in organic chemistry and physical chemistry regarding the structures and aromaticities of cyclobutadiene and cyclooctatetraene. This exercise exposes students to chemical problems that require computational methods as a…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Sandler, Isolde; Harper, Jason B.; Ho, Junming – Journal of Chemical Education, 2021
This article highlights some of the challenges in explaining simple substituent effects on keto-enol equilibria, particularly to an undergraduate audience. Quantum-chemical calculations were performed to identify the role of intramolecular hydrogen bonding, inductive effects due to electron-withdrawing groups, and cross-conjugation on the…
Descriptors: Science Instruction, Teaching Methods, Undergraduate Students, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Matovu, Henry; Won, Mihye; Treagust, David Franklin; Ungu, Dewi Ayu Kencana; Mocerino, Mauro; Tsai, Chin-Chung; Tasker, Roy – Chemistry Education Research and Practice, 2023
In recent years, chemistry educators are increasingly adopting immersive virtual reality (IVR) technology to help learners visualise molecular interactions. However, educational studies on IVR mostly investigated its usability and user perceptions leaving out its impact on improving conceptual understanding. If they evaluated students' knowledge…
Descriptors: Science Education, Chemistry, Computer Simulation, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Crandell, Olivia M.; Pazicni, Samuel – Chemistry Education Research and Practice, 2023
This study investigates students' cognitive resources for identifying symmetry elements using survey data collected from 39 inorganic chemistry students from twelve undergraduate inorganic classes at universities across the United States. We propose a framework that leverages students' knowledge of symmetry elements as a manifold of cognitive…
Descriptors: Science Process Skills, Cognitive Processes, Scientific Concepts, Inorganic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Chao-Tun Cao; Chenzhong Cao – Journal of Chemical Education, 2023
The inductive effect is one of the very important concepts of electronic effects in organic chemistry. In traditional teaching methods, only the origin, transmission mode, and decay of the inductive effect are introduced briefly, which is not conducive to students' complete understanding of the inductive effect. This work developed a new method to…
Descriptors: Undergraduate Students, Chemistry, Science Instruction, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Simbarashe Nkomo; Alia Bly – Journal of Chemical Education, 2024
In undergraduate science education, laboratory courses stand as essential cornerstones of experiential learning. Chemistry laboratory courses offer students unique hands-on experiences that bridge the gap between theoretical knowledge and practical application. The journey through the undergraduate chemistry curriculum is paved with a series of…
Descriptors: Undergraduate Students, College Science, Chemistry, Hands on Science
Peer reviewed Peer reviewed
Direct linkDirect link
Lisa Smith; D. M. Nirosh Udayanga; Xiaolin Qian; Lauren Adams; Sarah Sims; Charles Nettles; Xue Xu; Xin Cui; Deb Mlsna – Journal of Chemical Education, 2022
Catalysis and catalytic cycles are widely used in both research and industry. The addition of a catalysis experiment into the undergraduate laboratory curriculum is important and necessary training to expand student learning. Here, an experiment demonstrating iron-based tandem catalysis was developed and implemented in an organic chemistry course…
Descriptors: Organic Chemistry, Science Laboratories, College Science, Science Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Marco Bortoli; Laura Orian – Journal of Chemical Education, 2023
Molecules and Computer: Chemistry Calculations in Class (MC[superscript 4]) is a computational laboratory intended for final-year high school or undergraduate students. The topic is the antioxidant potential of anthocyanidins, which is chemically related to their radical scavenging action via the mechanism of hydrogen atom transfer (HAT). This…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, High School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Ina Zaimi; Amber J. Dood; Ginger V. Shultz – Chemistry Education Research and Practice, 2024
Asking students to explain why phenomena occur at a molecular level is vital to increasing their understanding of chemistry concepts. One way to elicit students' mechanistic reasoning and guide construction of knowledge is through Writing-to-Learn (WTL), which is a promising approach for students in organic chemistry courses. In the design of WTL…
Descriptors: Writing Assignments, Teaching Methods, Science Instruction, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Chloe Wasendorf; Joshua W. Reid; Rebecca Seipelt-Thiemann; Z. T. Grimes; Brock Couch; Nick T. Peters; Julia Massimelli Sewall; Audrey L. McCombs; Patrick I. Armstrong; Nancy Boury – Journal of Biological Education, 2024
Most biology undergraduates learn about mutations in multiple classrooms throughout their college career. Understanding personalised genome test results, genome editing controversies, and the appearance of new variants of viruses or antibiotic resistant bacteria all require foundational knowledge about mutations. However, the abstract nature of…
Descriptors: Test Construction, Test Validity, Criterion Referenced Tests, Biology
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10