NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tyler M. VanOursouw; Trevor Rottiger; Kiley A. Wadzinski; Brian E. VanderWaal; Madison J. Snyder; Riley T. Bittner; Omar K. Farha; Shannon C. Riha; Joseph E. Mondloch – Journal of Chemical Education, 2023
A two-component undergraduate laboratory experience has been developed by students in a senior level capstone course. The first component is a 3 h laboratory experience dedicated to the rapid synthesis of a metal-organic framework (MOF-808) in aqueous solution using readily available reagents and equipment. During the second component, MOF-808 was…
Descriptors: Curriculum Development, College Science, Science Laboratories, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Sharma, Vinita; McKone, Harold T.; Markow, Peter G. – Journal of Chemical Education, 2011
This article presents a brief history of the artificial coloration of foods, a discussion of the worldwide use of synthetic food dyes, and methods for separating and identifying 14 dyes in common use globally. The United States Food and Drug Administration presently has certified seven synthetic dyes for use in foods. An additional seven synthetic…
Descriptors: Color, Food, Technology, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Bindis, Michael P.; Bretz, Stacey Lowery; Danielson, Neil D. – Journal of Chemical Education, 2011
The high-performance liquid chromatography (HPLC) experiment, most often done in the undergraduate analytical instrumentation laboratory course, generally illustrates reversed-phase chromatography using a commercial C[subscript]18 silica column. To avoid the expense of periodic column replacement and introduce a choice of columns with different…
Descriptors: Plastics, Chemistry, Laboratories, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Jung, Seul – IEEE Transactions on Education, 2013
An interdisciplinary undergraduate-level robotics course offers students the chance to integrate their engineering knowledge learned throughout their college years by building a robotic system. Robotics is thus a core course in system and control-related engineering education. This paper summarizes the experience of developing robotics courses…
Descriptors: Robotics, Interdisciplinary Approach, Undergraduate Study, Courses
Wise, John H. – 1968
The Advanced Chemistry Laboratory Program is a project designed to devise experiments to coordinate the use of instruments in the laboratory programs of physical chemistry, instrumental analysis, and inorganic chemistry at the advanced undergraduate level. It is intended that such experiments would incorporate an introduction to the instrument…
Descriptors: Chemistry, College Science, Curriculum Development, Instruction
Steinfeld, J. I. – J Chem Educ, 1969
Descriptors: Chemistry, College Science, Curriculum Development, Laboratory Experiments
Peer reviewed Peer reviewed
Burnett, Louis E. – Advances in Physiology Education, 1991
The development of a curriculum that integrates laboratory, field, and nonlaboratory experiences in an undergraduate biology department is described. Some of the laboratory experiences provided students in a Principles of Biology course and how other parts of the upper division curriculum are structured around these key experiments are discussed.…
Descriptors: Biology, Course Descriptions, Curriculum Development, Higher Education
Goolsby, Charles M. – 1972
Intended to be used along with the "Teacher's Guide to Classroom Discussions for Biology" and the "Teacher's Guide to Laboratory Activities for Biology," this volume presents 43 laboratory exercises for introductory college-level biology. (CP)
Descriptors: Biology, College Science, Curriculum Development, Higher Education
Peer reviewed Peer reviewed
Navari, Rudolph M. – Journal of College Science Teaching, 1972
Describes a five-week introductory medical science course designed for both science and nonscience majors through integration of physiology, organic chemistry, anatomy, and biochemistry. Suggests its use as a quarter-semester, a tri-semester, or a regular semester course for students including premed and medical technicians. (CC)
Descriptors: College Science, Curriculum Development, Higher Education, Independent Study
Peer reviewed Peer reviewed
Yang, Min J.; Atkinson, George F. – Journal of Chemical Education, 1998
Addresses the difficulty that teaching assistants and new faculty members may experience in finding a convenient outline of the task of preparing an experiment for undergraduates. Explains all phases of developing a laboratory exercise and includes a list of things to consider for each phase. (DDR)
Descriptors: Chemistry, Concept Formation, Curriculum Development, Faculty Development
Peer reviewed Peer reviewed
Abu-Khalaf, Aziz M. – Chemical Engineering Education (CEE), 1998
Reviews the current goals of a laboratory course and describes experiences in using laboratory time to cover several important topics related to industry and academia. Discusses several subjects and presents related experiments. Contains 184 references. (DDR)
Descriptors: Chemical Engineering, College Curriculum, Course Content, Curriculum Development
Peer reviewed Peer reviewed
Direct linkDirect link
Casem, Merri Lynn – CBE - Life Sciences Education, 2006
Inquiry-based laboratories are acknowledged as the preferred method of instruction for development of research skills. Much has been written about changes in student performance associated with inquiry, but less is known about how students view the inquiry-based format or whether they perceive a benefit from this type of instruction. The Student…
Descriptors: Undergraduate Study, Student Attitudes, Student Reaction, Research Methodology