Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 18 |
Descriptor
College Science | 18 |
Handheld Devices | 18 |
Science Experiments | 18 |
Undergraduate Study | 18 |
Science Instruction | 16 |
Telecommunications | 16 |
Educational Technology | 13 |
Laboratory Experiments | 11 |
Science Laboratories | 11 |
Scientific Concepts | 10 |
Technology Uses in Education | 10 |
More ▼ |
Author
Publication Type
Journal Articles | 18 |
Reports - Descriptive | 12 |
Reports - Research | 6 |
Education Level
Higher Education | 18 |
Postsecondary Education | 15 |
High Schools | 6 |
Secondary Education | 6 |
Audience
Teachers | 2 |
Location
Spain | 1 |
Thailand | 1 |
Washington | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Wye, Steven – Physics Education, 2023
During the COVID-19 pandemic and subsequent lockdown, both schools and universities faced significant challenges in moving teaching from an in-situ setting to a remote one, this included laboratory experiments. This paper presents an experiment developed to use a phone's in built pressure sensor, common to most smart phones. By using this sensor…
Descriptors: COVID-19, Pandemics, School Closing, Science Instruction
Mananghaya, Michael Rivera; Yu, Dennis – Physics Education, 2022
A low-cost simple one-dimensional spring-mass system was constructed to investigate damped oscillations. The suspended mass in the system can move freely inside a cylinder containing a fluid. It provides an in-depth experience for demonstrating various concepts under oscillations. It can be used to probe the magnitude of damping forces in liquids…
Descriptors: Science Instruction, Physics, Scientific Concepts, Motion
Bouquet, F.; Bobroff, J.; Kolli, A.; Organtini, G. – Physics Education, 2021
We created an introductory physics activity for undergraduate students, consisting of measuring the same physical quantity by different methods. This allows us to confront students with questions of uncertainty, precision, and model versus theory. The aim was to measure the height of a building using only a smartphone and everyday low-cost…
Descriptors: Physics, College Science, Undergraduate Study, Measurement Techniques
Zhdanov, Arsenii; Pyay, Anna – Physics Teacher, 2022
Mobile phones are a widely used platform for educational apps, mobile health, and a variety of chemical tests. Here, we are working on a mobile phone-based physics lab (mPhysics) that uses a mobile phone's capabilities to run simple physics experiments and demonstrations. While a mobile phone can be used to analyze magnetic and optical properties…
Descriptors: Telecommunications, Handheld Devices, Physics, Science Instruction
Gallitto, Aurelio Agliolo; Battaglia, Onofrio Rosario; Fazio, Claudio – Physics Education, 2021
We describe an educational activity that can be done by using smartphones to collect data in physics experiments aimed to measure the oscillating period of a spring-mass system and the elastic constant of the helicoidal spring by the dynamic method. Results for the oscillating period and for the elastic constant of the spring agree very well with…
Descriptors: Science Instruction, Physics, Measurement Techniques, Telecommunications
Hinrichsen, Peter F. – Physics Education, 2020
MEMs gyros, such as those in smartphones allow the angular velocity of pendulums to be precisely measured at large angles, and phase plots of the angular acceleration versus the angular displacement confirm that [double dot][phi] = -[omega][superscript 2][subscript o] sin[phi] even for the non-sinusoidal motion at amplitude [phi][subscript o]…
Descriptors: Physics, Science Instruction, Motion, Scientific Concepts
Al-Soufi, Wajih; Carrazana-Garcia, Jorge; Novo, Mercedes – Journal of Chemical Education, 2020
We present our experience with transferring a four-day photometry and dye-adsorption laboratory experiment to the kitchens of students of Applied Thermodynamics from our degree in "Industrial Chemical Process Engineering". The students designed and built a double-beam photometer using their smartphones and household materials, then…
Descriptors: Science Instruction, Science Laboratories, Laboratory Experiments, Science Experiments
Dangkulwanich, Manchuta; Kongnithigarn, Kaness; Aurnoppakhun, Nattapat – Journal of Chemical Education, 2018
Routinely used in quantitative determination of various analytes, UV-vis spectroscopy is commonly taught in undergraduate chemistry laboratory courses. Because the technique measures the absorbance of light through the samples, losses from reflection and scattering by large molecules interfere with the measurement. To emphasize the importance of…
Descriptors: Telecommunications, Handheld Devices, Educational Technology, Technology Uses in Education
Mac Fhionnlaoich, Niamh; Ibsen, Stuart; Serrano, Luis A.; Taylor, Alaric; Qi, Runzhang; Guldin, Stefan – Journal of Chemical Education, 2018
Thin-layer chromatography (TLC) is one of the basic analytical procedures in chemistry and allows the demonstration of various chemical principles in an educational setting. An often-overlooked aspect of TLC is the capability to quantify isolated target compounds in an unknown sample. Here, we present a suitable route to implement quantitative…
Descriptors: Science Instruction, Chemistry, College Science, Undergraduate Study
Setiawan, B.; Septianto, R. D.; Suhendra, D.; Iskandar, F. – Physics Education, 2017
This paper describes the use of an inexpensive smartphone's magnetic sensor to measure magnetic field components (B[subscript x], B[subscript y] and B[subscript z]) induced by current wires in magnetostatic experiments. The variable parameters used to measure the magnetic sensor's capabilities were: the geometrical shapes of the wire, current…
Descriptors: Science Instruction, Telecommunications, Handheld Devices, Magnets
Malgieri, Massimiliano; Rosi, Tommaso; Onorato, Pasquale; Oss, Stefano – Physics Education, 2018
We present an educational approach to the phenomenon of phosphorescent emission. The approach is based on a stochastic toy model, in which electron states are represented by rows of squares on a cardboard table, and coins on the squares switch from one row to the other based on the roll of two dice. The discussion of different mechanisms, giving…
Descriptors: Science Instruction, Scientific Concepts, Physics, Telecommunications
Gee, Clifford T.; Kehoe, Eric; Pomerantz, William C. K.; Penn, R. Lee – Journal of Chemical Education, 2017
Proteins are involved in nearly every biological process, which makes them of interest to a range of scientists. Previous work has shown that hand-held cameras can be used to determine the concentration of colored analytes in solution, and this paper extends the approach to reactions involving a color change in order to quantify protein…
Descriptors: Chemistry, Science Instruction, High Schools, Secondary School Science
Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano – Physics Education, 2017
We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses…
Descriptors: Physics, Science Instruction, Mechanics (Physics), College Science
Passante, Gina; Emigh, Paul J.; Shaffer, Peter S. – Physical Review Special Topics - Physics Education Research, 2015
Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the…
Descriptors: Science Instruction, Mechanics (Physics), Quantum Mechanics, Scientific Concepts
Koesdjojo, Myra T.; Pengpumkiat, Sumate; Wu, Yuanyuan; Boonloed, Anukul; Huynh, Daniel; Remcho, Thomas P.; Remcho, Vincent T. – Journal of Chemical Education, 2015
We have developed a simple and direct method to fabricate paper-based microfluidic devices that can be used for a wide range of colorimetric assay applications. With these devices, assays can be performed within minutes to allow for quantitative colorimetric analysis by use of a widely accessible iPhone camera and an RGB color reader application…
Descriptors: Science Instruction, Telecommunications, Handheld Devices, Secondary School Science
Previous Page | Next Page ยป
Pages: 1 | 2