NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Liyang Sun; Eli Ben-Michael; Avi Feller – Grantee Submission, 2024
The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit with panel data. Two challenges arise with higher frequency data (e.g., monthly versus yearly): (1) achieving excellent pre-treatment fit is typically more challenging; and (2) overfitting to noise is more likely. Aggregating data…
Descriptors: Evaluation Methods, Comparative Analysis, Computation, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
David Bruns-Smith; Oliver Dukes; Avi Feller; Elizabeth L. Ogburn – Grantee Submission, 2024
We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning (AutoDML). These popular "doubly robust" or "de-biased machine learning estimators" combine outcome modeling with balancing weights -- weights that achieve covariate balance directly in lieu of estimating and…
Descriptors: Regression (Statistics), Weighted Scores, Data Analysis, Robustness (Statistics)
Joseph M. Kush; Elise T. Pas; Rashelle J. Musci; Catherine P. Bradshaw – Grantee Submission, 2022
Propensity score matching and weighting methods are often used in observational effectiveness studies to reduce imbalance between treated and untreated groups on a set of potential confounders. However, much of the prior methodological literature on matching and weighting has yet to examine performance for scenarios with a majority of treated…
Descriptors: Probability, Observation, Weighted Scores, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Oscar Clivio; Avi Feller; Chris Holmes – Grantee Submission, 2024
Reweighting a distribution to minimize a distance to a target distribution is a powerful and flexible strategy for estimating a wide range of causal effects, but can be challenging in practice because optimal weights typically depend on knowledge of the underlying data generating process. In this paper, we focus on design-based weights, which do…
Descriptors: Evaluation Methods, Causal Models, Error of Measurement, Guidelines
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ke-Hai Yuan; Zhiyong Zhang – Grantee Submission, 2022
Structural equation modeling (SEM) is a widely used technique for studies involving latent constructs. While covariance-based SEM (CB-SEM) permits estimating the regression relationship among latent constructs, the parameters governing this relationship do not apply to that among the scored values of the constructs, which are needed for…
Descriptors: Psychometrics, Structural Equation Models, Scores, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Yongfei Fang – Grantee Submission, 2023
Observational data typically contain measurement errors. Covariance-based structural equation modelling (CB-SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and…
Descriptors: Structural Equation Models, Regression (Statistics), Weighted Scores, Comparative Analysis
Ke-Hai Yuan; Yong Wen; Jiashan Tang – Grantee Submission, 2022
Structural equation modeling (SEM) and path analysis using composite-scores are distinct classes of methods for modeling the relationship of theoretical constructs. The two classes of methods are integrated in the partial-least-squares approach to structural equation modeling (PLS-SEM), which systematically generates weighted composites and uses…
Descriptors: Statistical Analysis, Weighted Scores, Least Squares Statistics, Structural Equation Models
Deng, Lifang; Yuan, Ke-Hai – Grantee Submission, 2022
Structural equation modeling (SEM) has been deemed as a proper method when variables contain measurement errors. In contrast, path analysis with composite-scores is preferred for prediction and diagnosis of individuals. While path analysis with composite-scores has been criticized for yielding biased parameter estimates, recent literature pointed…
Descriptors: Structural Equation Models, Path Analysis, Weighted Scores, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Zhiyong Zhang; Lijuan Wang – Grantee Submission, 2024
Mediation analysis plays an important role in understanding causal processes in social and behavioral sciences. While path analysis with composite scores was criticized to yield biased parameter estimates when variables contain measurement errors, recent literature has pointed out that the population values of parameters of latent-variable models…
Descriptors: Structural Equation Models, Path Analysis, Weighted Scores, Comparative Testing
Timothy Lycurgus; Ben B. Hansen; Mark White – Grantee Submission, 2022
We present an aggregation scheme that increases power in randomized controlled trials and quasi-experiments when the intervention possesses a robust and well-articulated theory of change. Intervention studies using longitudinal data often include multiple observations on individuals, some of which may be more likely to manifest a treatment effect…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Quasiexperimental Design, Intervention
Luke W. Miratrix; Jasjeet S. Sekhon; Alexander G. Theodoridis; Luis F. Campos – Grantee Submission, 2018
The popularity of online surveys has increased the prominence of using weights that capture units' probabilities of inclusion for claims of representativeness. Yet, much uncertainty remains regarding how these weights should be employed in analysis of survey experiments: Should they be used or ignored? If they are used, which estimators are…
Descriptors: Online Surveys, Weighted Scores, Data Interpretation, Robustness (Statistics)
Guanglei Hong; Jonah Deutsch; Heather D. Hill – Grantee Submission, 2015
Conventional methods for mediation analysis generate biased results when the mediator-outcome relationship depends on the treatment condition. This article shows how the ratio-of-mediator-probability weighting (RMPW) method can be used to decompose total effects into natural direct and indirect effects in the presence of treatment-by-mediator…
Descriptors: Weighted Scores, Probability, Statistical Analysis, Interaction
Jenkins, Jade Marcus; Farkas, George; Duncan, Greg J.; Burchinal, Margaret; Vandell, Deborah Lowe – Grantee Submission, 2016
As policy-makers contemplate expanding preschool opportunities for low-income children, one possibility is to fund two, rather than one year of Head Start for children at ages 3 and 4. Another option is to offer one year of Head Start followed by one year of pre-k. We ask which of these options is more effective. We use data from the Oklahoma…
Descriptors: Achievement Tests, Kindergarten, Early Childhood Education, Preschool Education