Publication Date
| In 2026 | 5 |
| Since 2025 | 822 |
| Since 2022 (last 5 years) | 5510 |
| Since 2017 (last 10 years) | 15197 |
| Since 2007 (last 20 years) | 31359 |
Descriptor
| Science Instruction | 52074 |
| Teaching Methods | 18144 |
| Science Education | 12307 |
| Foreign Countries | 11168 |
| Scientific Concepts | 10222 |
| College Science | 10041 |
| Chemistry | 9000 |
| Physics | 8755 |
| Secondary School Science | 8104 |
| Higher Education | 6842 |
| Science Activities | 6378 |
| More ▼ | |
Source
Author
| Yager, Robert E. | 80 |
| Treagust, David F. | 79 |
| Roth, Wolff-Michael | 68 |
| Linn, Marcia C. | 65 |
| Cross, Rod | 58 |
| Greenslade, Thomas B., Jr. | 52 |
| Tsai, Chin-Chung | 51 |
| Hand, Brian | 50 |
| Tobin, Kenneth | 50 |
| Lee, Okhee | 48 |
| Sadler, Troy D. | 47 |
| More ▼ | |
Publication Type
Education Level
Audience
| Teachers | 7300 |
| Practitioners | 6561 |
| Researchers | 1101 |
| Students | 482 |
| Policymakers | 451 |
| Administrators | 391 |
| Parents | 105 |
| Community | 29 |
| Media Staff | 28 |
| Support Staff | 6 |
| Counselors | 4 |
| More ▼ | |
Location
| Turkey | 1292 |
| Australia | 900 |
| United Kingdom | 675 |
| Indonesia | 626 |
| United Kingdom (England) | 509 |
| Canada | 503 |
| California | 417 |
| Germany | 415 |
| China | 352 |
| South Africa | 347 |
| Taiwan | 324 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards without Reservations | 18 |
| Meets WWC Standards with or without Reservations | 24 |
| Does not meet standards | 23 |
Balta, Nuri – Physics Education, 2018
One way to ease the solution of physics problems is to visualize the situation. However, by visualization we do not mean the pictorial representation of the problem. Instead, we mean a sketch for the solution of the problem. In this paper a new approach to solving physics problems, based on decomposing the problem into with and without gravity, is…
Descriptors: Physics, Visualization, Science Instruction, Problem Solving
Ruiz, Michael J. – Physics Education, 2018
Students are amazed when I show them a zoo photo of an animal behind a fence and then a zoomed-in photo where the fence has disappeared. They ask 'Where did the fence go?' This paper will explore this magical phenomenon which draws from concepts in photography (angle of view, depth of field) and physics (convex lenses, focal length, real images).…
Descriptors: Physics, Science Instruction, Animals, Photography
Härtel, Hermann – European Journal of Physics Education, 2018
The classical physics treatment of "Electromagnetic Induction" is based on Faraday's Law and Lorentz Force. This paper presents an alternative approach, based on Wilhelm Weber´s Fundamental Force Law of Electrodynamics. It covers mutual induction, self-induction, parallel and anti-parallel currents, and currents in the same and opposite…
Descriptors: Energy, Scientific Concepts, Scientific Principles, Physics
Mungan, Carl E. – Physics Teacher, 2018
Consider a chain of length L that hangs in a U shape with end A fixed to a rigid support and free end E released from rest starting from the same initial height (call it y = 0) as A. Figure 1 sketches the chain after end E has fallen a distance y. Points O and A are assumed to be close enough to each other and the chain flexible enough that the…
Descriptors: Physics, Science Instruction, Teaching Methods, Video Technology
Agrawal, Dulli Chandra – Physics Education, 2018
Incandescent lamps are not only good sources of electromagnetic energy radiations but their operating temperatures are comparable to the temperatures of stars also. These features can be exploited to teach apparent magnitude scale both theoretically and experimentally. The numerical illustrations presented corresponding to 10, 100, 1000 and 10 000…
Descriptors: Physics, Energy, Magnets, Light
Pinochet, Jorge; Van Sint Jan, Michael – Physics Education, 2018
In 1936, Albert Einstein wrote a brief article where he suggested the possibility that a massive object acted as a lens, amplifying the brightness of a star. As time went by, this phenomenon--known as gravitational lensing--has become a powerful research tool in astrophysics. The simplest and symmetrical expression of a gravitational lens is known…
Descriptors: Physics, Science Instruction, Teaching Methods, Algebra
Brozis, Mirosaw; Swiderski, Kamil – Physics Education, 2018
Our students built a full-size, mobile planetarium in three weeks. The planetarium was built with commonly available, cheap construction materials. Our priorities were mobility, possibility of quick assembly and reassembly and the students' availability of materials in every place in the world. The students calculated all the parameters of the…
Descriptors: Science Instruction, Astronomy, Climate, STEM Education
Johnson, Philip – School Science Review, 2018
This article challenges the notion that entropy is something to be avoided. A line of argument is presented that is accessible to those not having specialist knowledge and that offers a new perspective to those more familiar with the concept. It shows that temperature is better understood by addressing entropy. Entropy change diagrams are…
Descriptors: Scientific Concepts, Climate, Visual Aids, Chemistry
Balukovic, Jasmina; Slisko, Josip; Cruz, Adrián Corona – Physics Teacher, 2018
Physics textbook authors commonly introduce the concept of weightlessness (apparent or real) through a "thought experiment" in which a person weighs herself or himself in an elevator. When the elevator falls freely, the spring balance should show zero weight. There is an unresolved controversy about how this "zero reading"…
Descriptors: Physics, Science Instruction, Scientific Concepts, Textbooks
Smith, Donald A. – Physics Teacher, 2018
Games have often been used in the classroom to teach physics ideas and concepts, but there has been less published on games that can be used to teach scientific thinking. D. Maloney and M. Masters describe an activity in which students attempt to infer rules to a game from a history of moves, but the students do not actually play the game. Giving…
Descriptors: Physics, Science Instruction, Scientific Concepts, Educational Games
Shakur, Asif; Connor, Rainor – Physics Teacher, 2018
With the introduction of the Wireless Smart Cart by PASCO scientific in April 2016, we expect a paradigm shift in undergraduate physics laboratory instruction. We have evaluated the feasibility of using the smart cart by carrying out experiments that are usually performed using traditional PASCO equipment. The simplicity, convenience, and…
Descriptors: Laboratory Equipment, Undergraduate Study, Physics, Science Instruction
Pelaez, Nancy; Anderson, Trevor R.; Gardner, Stephanie M.; Yin, Yue; Abraham, Joel K.; Barlett, Edward L.; Gormally, Cara; Hurney, Carol A.; Long, Tammy M.; Newman, Dina L.; Sirum, Karen; Stevens, Michael T. – CBE - Life Sciences Education, 2018
Since 2009, the U.S. National Science Foundation Directorate for Biological Sciences has funded Research Coordination Networks (RCN) aimed at collaborative efforts to improve participation, learning, and assessment in undergraduate biology education (UBE). RCN-UBE projects focus on coordination and communication among scientists and educators who…
Descriptors: Science Instruction, Biology, Models, Undergraduate Students
Hoffmann, Heiko; Tausch, Michael W. – Journal of Chemical Education, 2018
An inexpensive self-made apparatus for photochemical experiments was developed and has been tested to facilitate the inclusion of photoreactions in undergraduate teaching laboratories despite budget constraints. The core setup allowing the selection of defined wavelengths in the visible and UV regions is made of commercially available components…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, Teaching Methods
Zheng, Shao-Liang; Campbell, Michael G. – Journal of Chemical Education, 2018
A strategy for incorporating crystallography laboratory practice into various experimental chemistry courses for undergraduates is described. The flexible approach that relates key concepts to hands-on activities allows students to draw an immediate connection between crystallography theory and their own lab experiences, leading to a deeper…
Descriptors: Chemistry, Science Instruction, Laboratory Experiments, Teaching Methods
Halpern, Arthur M.; Marzzacco, Charles J. – Journal of Chemical Education, 2018
A spreadsheet-based project is presented that is designed to enhance and expand student understanding of phase transition properties of pure water and ideal and nonideal (electrolyte) aqueous solutions. Using fundamental principles of classical and statistical thermodynamics, students calculate the melting and boiling points, the enthalpies and…
Descriptors: Chemistry, Thermodynamics, Science Instruction, Spreadsheets

Peer reviewed
Direct link
