Publication Date
In 2025 | 36 |
Since 2024 | 138 |
Since 2021 (last 5 years) | 418 |
Since 2016 (last 10 years) | 901 |
Since 2006 (last 20 years) | 1648 |
Descriptor
Source
Author
Publication Type
Education Level
Location
Australia | 31 |
Germany | 20 |
United Kingdom (England) | 18 |
United States | 18 |
Canada | 17 |
Netherlands | 17 |
United Kingdom | 14 |
California | 12 |
Spain | 12 |
North Carolina | 11 |
Pennsylvania | 10 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 4 |
Individuals with Disabilities… | 2 |
Aid to Families with… | 1 |
Elementary and Secondary… | 1 |
Elementary and Secondary… | 1 |
Every Student Succeeds Act… | 1 |
Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations | 2 |
Does not meet standards | 1 |
Campbell, Harlan; de Jong, Valentijn M. T.; Maxwell, Lauren; Jaenisch, Thomas; Debray, Thomas P. A.; Gustafson, Paul – Research Synthesis Methods, 2021
Ideally, a meta-analysis will summarize data from several unbiased studies. Here we look into the less than ideal situation in which contributing studies may be compromised by non-differential measurement error in the exposure variable. Specifically, we consider a meta-analysis for the association between a continuous outcome variable and one or…
Descriptors: Error of Measurement, Meta Analysis, Bayesian Statistics, Statistical Analysis
Batley, Prathiba Natesan; Hedges, Larry V. – Grantee Submission, 2021
Although statistical practices to evaluate intervention effects in SCEDs have gained prominence in the recent times, models are yet to incorporate and investigate all their analytic complexities. Most of these statistical models incorporate slopes and autocorrelations both of which contribute to trend in the data. The question that arises is…
Descriptors: Bayesian Statistics, Models, Accuracy, Computation
Meyer, Joerg – Teaching Statistics: An International Journal for Teachers, 2020
Some situations are presented with perplexing properties, which become clearer by looking at contingency tables. This in turn leads to problems that can be solved using conditional frequencies and thus leading to the Bayes formula with natural frequencies or probabilities.
Descriptors: Bayesian Statistics, Teaching Methods, Probability, Mathematics Instruction
Kersting, Nicole B.; Smith, James E.; Vezino, Beau; Chen, Mei-Kuang; Wood, Marcy B.; Stigler, James W. – ZDM: The International Journal on Mathematics Education, 2020
In this article we propose the use of Bayesian networks as a potentially promising way to model usable knowledge. Using the Classroom Video Analysis (CVA and CVA-M) assessments as a lab model for studying teachers' usable knowledge, we first explored whether we can identify the knowledge (pieces) underlying teachers' written responses. In the CVA…
Descriptors: Bayesian Statistics, Affordances, Models, Teacher Characteristics
Vehtari, Aki; Gelman, Andrew; Sivula, Tuomas; Jylänki, Pasi; Tran, Dustin; Sahai, Swupnil; Blomstedt, Paul; Cunningham, John P.; Schiminovich, David; Robert, Christian P. – Grantee Submission, 2020
A common divide-and-conquer approach for Bayesian computation with big data is to partition the data, perform local inference for each piece separately, and combine the results to obtain a global posterior approximation. While being conceptually and computationally appealing, this method involves the problematic need to also split the prior for…
Descriptors: Bayesian Statistics, Algorithms, Computation, Generalization
Sonu Jose – ProQuest LLC, 2020
Bayesian network is a probabilistic graphical model that has wide applications in various domains due to its peculiarity of knowledge representation and reasoning under uncertainty. This research aims at Bayesian network structure learning and how the learned model can be used for reasoning. Learning the structure of Bayesian network from data is…
Descriptors: Bayesian Statistics, Models, Simulation, Algorithms
Lee, Morgan P.; Croteau, Ethan; Gurung, Ashish; Botelho, Anthony F.; Heffernan, Neil T. – International Educational Data Mining Society, 2023
The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to "detector rot." We compare the…
Descriptors: Bayesian Statistics, Models, Generalizability Theory, Longitudinal Studies
Van Lissa, Caspar J.; van Erp, Sara; Clapper, Eli-Boaz – Research Synthesis Methods, 2023
When meta-analyzing heterogeneous bodies of literature, meta-regression can be used to account for potentially relevant between-studies differences. A key challenge is that the number of candidate moderators is often high relative to the number of studies. This introduces risks of overfitting, spurious results, and model non-convergence. To…
Descriptors: Bayesian Statistics, Regression (Statistics), Maximum Likelihood Statistics, Meta Analysis
Man, Kaiwen; Harring, Jeffrey R. – Educational and Psychological Measurement, 2023
Preknowledge cheating jeopardizes the validity of inferences based on test results. Many methods have been developed to detect preknowledge cheating by jointly analyzing item responses and response times. Gaze fixations, an essential eye-tracker measure, can be utilized to help detect aberrant testing behavior with improved accuracy beyond using…
Descriptors: Cheating, Reaction Time, Test Items, Responses
Obeng, Asare Yaw – Cogent Education, 2023
The learning processes have been significantly impacted by technology. Numerous learners have adopted technology-based learning systems as the preferred form of learning. It is then necessary to identify the learning styles of learners to deliver appropriate resources, engage them, increase their motivation, and enhance their satisfaction and…
Descriptors: Predictor Variables, Cognitive Style, Electronic Learning, College Freshmen
Edelsbrunner, Peter A.; Flaig, Maja; Schneider, Michael – Journal of Research on Educational Effectiveness, 2023
Latent transition analysis is an informative statistical tool for depicting heterogeneity in learning as latent profiles. We present a Monte Carlo simulation study to guide researchers in selecting fit indices for identifying the correct number of profiles. We simulated data representing profiles of learners within a typical pre- post- follow…
Descriptors: Learning Processes, Profiles, Monte Carlo Methods, Bayesian Statistics
Hayes, Brett K.; Liew, Shi Xian; Desai, Saoirse Connor; Navarro, Danielle J.; Wen, Yuhang – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
The samples of evidence we use to make inferences in everyday and formal settings are often subject to selection biases. Two property induction experiments examined group and individual sensitivity to one type of selection bias: sampling frames - causal constraints that only allow certain types of instances to be sampled. Group data from both…
Descriptors: Logical Thinking, Inferences, Bias, Individual Differences
Hasan Aykut Karaboga; Ibrahim Demir – International Journal of Assessment Tools in Education, 2023
Bayesian Networks (BNs) are probabilistic graphical statistical models that have been widely used in many fields over the last decade. This method, which can also be used for educational data mining (EDM) purposes, is a fairly new method in education literature. This study models students' science success using the BN approach. Science is one of…
Descriptors: Bayesian Statistics, Science Achievement, Achievement Tests, International Assessment
Marcel R. Haas; Colin Caprani; Benji T. van Beurden – Journal of Learning Analytics, 2023
We present an innovative modelling technique that simultaneously constrains student performance, course difficulty, and the sensitivity with which a course can differentiate between students by means of grades. Grade lists are the only necessary ingredient. Networks of courses will be constructed where the edges are populations of students that…
Descriptors: Bayesian Statistics, Computer Software, Learning Analytics, Grades (Scholastic)
Kenneth Tyler Wilcox; Ross Jacobucci; Zhiyong Zhang; Brooke A. Ammerman – Grantee Submission, 2023
Text is a burgeoning data source for psychological researchers, but little methodological research has focused on adapting popular modeling approaches for text to the context of psychological research. One popular measurement model for text, topic modeling, uses a latent mixture model to represent topics underlying a body of documents. Recently,…
Descriptors: Bayesian Statistics, Content Analysis, Undergraduate Students, Self Destructive Behavior