Publication Date
| In 2026 | 2 |
| Since 2025 | 55 |
| Since 2022 (last 5 years) | 357 |
| Since 2017 (last 10 years) | 823 |
| Since 2007 (last 20 years) | 1616 |
Descriptor
Source
Author
Publication Type
Education Level
Location
| Australia | 31 |
| Germany | 20 |
| United Kingdom (England) | 18 |
| United States | 18 |
| Canada | 17 |
| Netherlands | 17 |
| United Kingdom | 14 |
| California | 12 |
| Spain | 12 |
| North Carolina | 11 |
| China | 10 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 4 |
| Individuals with Disabilities… | 2 |
| Aid to Families with… | 1 |
| Elementary and Secondary… | 1 |
| Elementary and Secondary… | 1 |
| Every Student Succeeds Act… | 1 |
| Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards with or without Reservations | 2 |
| Does not meet standards | 1 |
A Bayesian Analysis of a Cognitive-Behavioral Therapy Intervention for High-Risk People on Probation
SeungHoon Han; Jordan M. Hyatt; Geoffrey C. Barnes; Lawrence W. Sherman – Evaluation Review, 2024
This analysis employs a Bayesian framework to estimate the impact of a Cognitive-Behavioral Therapy (CBT) intervention on the recidivism of high-risk people under community supervision. The study relies on the reanalysis of experimental datal using a Bayesian logistic regression model. In doing so, new estimates of programmatic impact were…
Descriptors: Behavior Modification, Cognitive Restructuring, Criminals, Recidivism
MOOC Performance Prediction and Analysis via Bayesian Network and Maslow's Hierarchical Needs Theory
Luyu Zhu; Jia Hao; Jianhou Gan – Interactive Learning Environments, 2024
Nowadays, Massive Open Online Courses (MOOC) has been gradually accepted by the public as a new type of education and teaching method. However, due to the lack of timely intervention and guidance from educators, learners' performance is not as effective as it could be. To address this problem, predicting MOOC learners' performance and providing…
Descriptors: MOOCs, Academic Achievement, Prediction, Bayesian Statistics
Yamaguchi, Kazuhiro; Okada, Kensuke – Journal of Educational and Behavioral Statistics, 2020
In this article, we propose a variational Bayes (VB) inference method for the deterministic input noisy AND gate model of cognitive diagnostic assessment. The proposed method, which applies the iterative algorithm for optimization, is derived based on the optimal variational posteriors of the model parameters. The proposed VB inference enables…
Descriptors: Bayesian Statistics, Statistical Inference, Cognitive Measurement, Mathematics
Madsen, Jens Koed; Hahn, Ulrike; Pilditch, Toby D. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2020
In this article, we explore how people revise their belief in a hypothesis and the reliability of sources in circumstances where those sources are either independent or are partially dependent because of their shared, common background. Specifically, we examine people's revision of perceived source reliability by comparison with a formal model of…
Descriptors: Beliefs, Reliability, Information Sources, Foreign Countries
Du, Han; Bradbury, Thomas N.; Lavner, Justin A.; Meltzer, Andrea L.; McNulty, James K.; Neff, Lisa A.; Karney, Benjamin R. – Research Synthesis Methods, 2020
Researchers often seek to synthesize results of multiple studies on the same topic to draw statistical or substantive conclusions and to estimate effect sizes that will inform power analyses for future research. The most popular synthesis approach is meta-analysis. There have been few discussions and applications of other synthesis approaches.…
Descriptors: Bayesian Statistics, Meta Analysis, Statistical Inference, Synthesis
Jabar, Syaheed B.; Fougnie, Daryl – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2022
Expectations about the environment play a large role in shaping behavior, but how does this occur? Do expectations change the way we perceive the world, or just our decisions based on unbiased perceptions? We investigated the relative contributions of priors to these 2 stages by manipulating "when" information about expected color was…
Descriptors: Expectation, Behavior Change, Visual Perception, Decision Making
Kaplan, David; Chen, Jianschen; Yavuz, Sinan; Lyu, Weicong – Grantee Submission, 2022
The purpose of this paper is to demonstrate and evaluate the use of "Bayesian dynamic borrowing"(Viele et al, in Pharm Stat 13:41-54, 2014) as a means of systematically utilizing historical information with specific applications to large-scale educational assessments. Dynamic borrowing via Bayesian hierarchical models is a special case…
Descriptors: Bayesian Statistics, Models, Prediction, Accuracy
Yao, Ching-Bang; Wu, Yu-Ling – International Journal of Information and Communication Technology Education, 2022
With the impacts of COVID-19 epidemic, e-learning has become a popular research issue. Therefore, how to upgrade the interactivity of e-learning, and allow learners to quickly access personalized and popular learning information from huge digital materials, is very important. However, chatbots are mostly used in automation, as well as simple…
Descriptors: Electronic Learning, Artificial Intelligence, Individualized Instruction, Bayesian Statistics
John Deke; Mariel Finucane; Dan Thal – Society for Research on Educational Effectiveness, 2022
Background/Context: Methodological background: Meta-analysis typically depends on the assumption that true effects follow the normal distribution. While assuming normality of effect "estimates" is often supported by a central limit theorem, normality for the distribution of interventions' "true" effects is a computational…
Descriptors: Bayesian Statistics, Meta Analysis, Regression (Statistics), Research Design
Lee, Daniel Y.; Harring, Jeffrey R. – Journal of Educational and Behavioral Statistics, 2023
A Monte Carlo simulation was performed to compare methods for handling missing data in growth mixture models. The methods considered in the current study were (a) a fully Bayesian approach using a Gibbs sampler, (b) full information maximum likelihood using the expectation-maximization algorithm, (c) multiple imputation, (d) a two-stage multiple…
Descriptors: Monte Carlo Methods, Research Problems, Statistical Inference, Bayesian Statistics
Martinková, Patrícia; Bartoš, František; Brabec, Marek – Journal of Educational and Behavioral Statistics, 2023
Inter-rater reliability (IRR), which is a prerequisite of high-quality ratings and assessments, may be affected by contextual variables, such as the rater's or ratee's gender, major, or experience. Identification of such heterogeneity sources in IRR is important for the implementation of policies with the potential to decrease measurement error…
Descriptors: Interrater Reliability, Bayesian Statistics, Statistical Inference, Hierarchical Linear Modeling
Kreitchmann, Rodrigo S.; Sorrel, Miguel A.; Abad, Francisco J. – Educational and Psychological Measurement, 2023
Multidimensional forced-choice (FC) questionnaires have been consistently found to reduce the effects of socially desirable responding and faking in noncognitive assessments. Although FC has been considered problematic for providing ipsative scores under the classical test theory, item response theory (IRT) models enable the estimation of…
Descriptors: Measurement Techniques, Questionnaires, Social Desirability, Adaptive Testing
Huang, Hening – Research Synthesis Methods, 2023
Many statistical methods (estimators) are available for estimating the consensus value (or average effect) and heterogeneity variance in interlaboratory studies or meta-analyses. These estimators are all valid because they are developed from or supported by certain statistical principles. However, no estimator can be perfect and must have error or…
Descriptors: Statistical Analysis, Computation, Measurement Techniques, Meta Analysis
Nesra Yannier; Scott E. Hudson; Henry Chang; Kenneth R. Koedinger – International Journal of Artificial Intelligence in Education, 2024
Adaptivity in advanced learning technologies offer the possibility to adapt to different student backgrounds, which is difficult to do in a traditional classroom setting. However, there are mixed results on the effectiveness of adaptivity based on different implementations and contexts. In this paper, we introduce AI adaptivity in the context of a…
Descriptors: Artificial Intelligence, Computer Software, Feedback (Response), Outcomes of Education
Min Qi; Xinyang Hu; Hualin Bi – Journal of Baltic Science Education, 2024
The redox reaction is a core concept of upper-secondary school chemistry curriculum. Accurate diagnosis of students' conceptual understanding of the redox reaction from a cognitive structure perspective is critical for enhancing their understanding of chemical concepts. This study utilized Bayesian networks to investigate the cognitive structures…
Descriptors: Bayesian Statistics, Cognitive Measurement, Diagnostic Tests, Cognitive Structures

Peer reviewed
Direct link
