NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 61 to 75 of 7,062 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rui Hu; Zuxian Shen; Tae-Won Kang; Li Wang; Peng Bin; Shan Sun – SAGE Open, 2023
The multiple mechanisms of entrepreneurial intention are still an open issue, and few have explored whether the relationship between entrepreneurial intention and proactive personality is influenced by entrepreneurial passion. This study aims to reveal the mediation role of entrepreneurial passion between proactive personality and entrepreneurial…
Descriptors: Foreign Countries, Undergraduate Students, Entrepreneurship, Intention
Shan Jiang – ProQuest LLC, 2023
Piecewise latent growth modeling (PLGM) is a class of longitudinal models using a structural equation modeling framework to describe stage-like, discontinuous change of individuals over time. PLGM breaks the overall time window into non-overlapped segments where separate functions can be fitted to represent differential growth patterns for each…
Descriptors: Programming Languages, Structural Equation Models, Social Sciences, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Um, Byeolbee; Bardhoshi, Gerta – Counselor Education and Supervision, 2022
This study examined the relationship between demands, resources, meaningful work, and burnout of counselors-in-training. The results of structural equation modeling indicated that demands and resources significantly predicted burnout of counselors-in-training, whereas meaningful work did not mediate the relationship between resources and burnout.…
Descriptors: Burnout, Counselor Training, Structural Equation Models, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Philipp Sterner; Kim De Roover; David Goretzko – Structural Equation Modeling: A Multidisciplinary Journal, 2025
When comparing relations and means of latent variables, it is important to establish measurement invariance (MI). Most methods to assess MI are based on confirmatory factor analysis (CFA). Recently, new methods have been developed based on exploratory factor analysis (EFA); most notably, as extensions of multi-group EFA, researchers introduced…
Descriptors: Error of Measurement, Measurement Techniques, Factor Analysis, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Afef Saihi; Mohamed Ben-Daya; Moncer Hariga – Education and Information Technologies, 2025
The integration of AI-chatbots into higher education offers the potential to enhance learning practices. This research aims to explore the factors influencing AI-chatbots adoption within higher education, with a focus on the moderating roles of technological proficiency and academic discipline. Utilizing a survey-based approach and advanced…
Descriptors: Technology Uses in Education, Artificial Intelligence, Higher Education, Technology Integration
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Peerayuth Charoensukmongkol; Jenette Villegas Puyod – International Journal of Leadership in Education, 2024
This research examines the influence of transformational leadership on role ambiguity and work-life balance of university employees in the Philippines during the COVID-19 pandemic. The study also analyzes the moderating effect of employee involvement on the link between transformational leadership and role ambiguity. Online survey data were…
Descriptors: Transformational Leadership, Family Work Relationship, COVID-19, Pandemics
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan Fang; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Dynamic structural equation modeling (DSEM) is a useful technique for analyzing intensive longitudinal data. A challenge of applying DSEM is the missing data problem. The impact of missing data on DSEM, especially on widely applied DSEM such as the two-level vector autoregressive (VAR) cross-lagged models, however, is understudied. To fill the…
Descriptors: Structural Equation Models, Bayesian Statistics, Monte Carlo Methods, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Xijuan Zhang; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A full structural equation model (SEM) typically consists of both a measurement model (describing relationships between latent variables and observed scale items) and a structural model (describing relationships among latent variables). However, often researchers are primarily interested in testing hypotheses related to the structural model while…
Descriptors: Structural Equation Models, Goodness of Fit, Robustness (Statistics), Factor Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Qinxin Shi; Dian Yu; Jonathan E. Butner; Cynthia A. Berg; MaryJane Simms Campbell; Deborah J. Wiebe – Applied Developmental Science, 2024
Common ways to test associations between two repeatedly measured constructs have two primary limitations. Studies often report the average effects and ignore the heterogeneity. Independently interpreted autoregression and cross-lagged coefficients (i.e. local effects) may not match the holistic dynamic patterns (i.e. considering all coefficients…
Descriptors: High School Seniors, Young Adults, Diabetes, Holistic Approach
Peer reviewed Peer reviewed
Direct linkDirect link
Walter P. Vispoel; Hyeri Hong; Hyeryung Lee – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Although generalizability theory (GT) designs typically are analyzed using analysis of variance (ANOVA) procedures, they also can be integrated into structural equation models (SEMs). In this tutorial, we review basic concepts for conducting univariate and multivariate GT analyses and demonstrate advantages of doing such analyses within SEM…
Descriptors: Structural Equation Models, Self Concept Measures, Self Esteem, Generalizability Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Phillip K. Wood – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The logistic and confined exponential curves are frequently used in studies of growth and learning. These models, which are nonlinear in their parameters, can be estimated using structural equation modeling software. This paper proposes a single combined model, a weighted combination of both models. Mplus, Proc Calis, and lavaan code for the model…
Descriptors: Structural Equation Models, Computation, Computer Software, Weighted Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Chi Kit Jacky Ng; Lok Yin Joyce Kwan; Wai Chan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In the past decade, moderated mediation analysis has been extensively and increasingly employed in social and behavioral sciences. With its widespread use, it is particularly important to ensure the moderated mediation analysis will not bring spurious results. Spurious effects have been studied in both mediation and moderation analysis, but this…
Descriptors: Mediation Theory, Social Sciences, Behavioral Sciences, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Schamberger, Tamara; Schuberth, Florian; Henseler, Jörg – International Journal of Behavioral Development, 2023
Research in human development often relies on composites, that is, composed variables such as indices. Their composite nature renders these variables inaccessible to conventional factor-centric psychometric validation techniques such as confirmatory factor analysis (CFA). In the context of human development research, there is currently no…
Descriptors: Individual Development, Factor Analysis, Statistical Analysis, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Cox, Kyle; Kelcey, Benjamin – Educational and Psychological Measurement, 2023
Multilevel structural equation models (MSEMs) are well suited for educational research because they accommodate complex systems involving latent variables in multilevel settings. Estimation using Croon's bias-corrected factor score (BCFS) path estimation has recently been extended to MSEMs and demonstrated promise with limited sample sizes. This…
Descriptors: Structural Equation Models, Educational Research, Hierarchical Linear Modeling, Sample Size
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  471