Publication Date
| In 2026 | 0 |
| Since 2025 | 3 |
| Since 2022 (last 5 years) | 36 |
| Since 2017 (last 10 years) | 99 |
| Since 2007 (last 20 years) | 225 |
Descriptor
Source
Author
Publication Type
Education Level
| Higher Education | 196 |
| Postsecondary Education | 134 |
| Secondary Education | 14 |
| High Schools | 6 |
| Middle Schools | 2 |
| Elementary Secondary Education | 1 |
| Grade 10 | 1 |
| Junior High Schools | 1 |
Audience
| Practitioners | 137 |
| Teachers | 117 |
| Researchers | 36 |
| Students | 8 |
| Administrators | 3 |
| Policymakers | 2 |
Location
| Brazil | 2 |
| China | 2 |
| France | 2 |
| Indiana | 2 |
| Singapore | 2 |
| United Kingdom | 2 |
| United Kingdom (Great Britain) | 2 |
| California (Los Angeles) | 1 |
| Canada | 1 |
| Canada (Edmonton) | 1 |
| Colombia | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
McClellan, Michael J.; Cass, Marion E. – Journal of Chemical Education, 2015
This communication is a collection of additions and modifications to two previously published classic inorganic synthesis laboratory experiments. The experimental protocol for the synthesis and isolation of enantiomerically enriched ?- (or ?-)Co(en)[subscript 3]I[subscript 3] has been modified to increase reproducibility, yield, and enantiomeric…
Descriptors: Laboratory Experiments, Inorganic Chemistry, Synthesis, Undergraduate Students
Adhikary, Chandan; Sana, Sibananda; Chattopadhyay, K. N. – Journal of Chemical Education, 2015
Chunk-based strategy and mnemonics have been developed to write ground state electron configurations of elements, which is a routine exercise for the higher secondary (pre-university) level general chemistry students. To assimilate a better understanding of the nature of chemical reactions, an adequate knowledge of the periodic table of elements…
Descriptors: Molecular Structure, Teaching Methods, Educational Strategies, Educational Practices
Berg, Steffen; Ghosh, Abhik – Journal of Chemical Education, 2013
In a recent article by the authors, the suggestion was made that arrow pushing, a widely used tool in organic chemistry, could also be profitably employed in the teaching of introductory inorganic chemistry. A number of relatively simple reactions were used to illustrate this thesis, raising the question whether the same approach might rationalize…
Descriptors: Science Instruction, College Science, Inorganic Chemistry, Teaching Methods
Horikoshi, Ryo; Kobayashi, Yoji; Kageyama, Hiroshi – Journal of Chemical Education, 2013
Catalysis with transition-metal complexes is a part of the inorganic chemistry curriculum and a challenging topic for upper-level undergraduate and graduate students. A hands-on teaching aid has been developed for use during conventional lectures to help students understand these catalytic reactions. A unique method of illustrating the…
Descriptors: Science Instruction, Inorganic Chemistry, Hands on Science, Scientific Concepts
Johnson, Adam R. – Journal of Chemical Education, 2013
A molecular orbital (MO) diagram, especially its frontier orbitals, explains the bonding and reactivity for a chemical compound. It is therefore important for students to learn how to construct one. The traditional methods used to derive these diagrams rely on linear algebra techniques to combine ligand orbitals into symmetry-adapted linear…
Descriptors: Inorganic Chemistry, Molecular Structure, Visual Aids, College Science
Thalos, Mariam – Science & Education, 2013
Chemistry possesses a distinctive theoretical lens--a distinctive set of theoretical concerns regarding the dynamics and transformations of a perplexing variety of organic and nonorganic substances--to which it must be faithful. Even if it is true that chemical facts bear a special (reductive) relationship to physical facts, nonetheless it will…
Descriptors: Science Instruction, Chemistry, Teaching Methods, Theories
Feng, Z. Vivian; Edelman, Kate R.; Swanson, Benjamin P. – Journal of Chemical Education, 2015
Flow synthesis in microfluidic devices has been rapidly adapted in the pharmaceutical industry and in many research laboratories. Yet, the cost of commercial flow reactors is a major factor limiting the dissemination of this technology in the undergraduate curriculum. Here, we present a laboratory activity where students design and fabricate…
Descriptors: Organic Chemistry, Inorganic Chemistry, Student Developed Materials, Science Materials
Bridgeman, Adam J.; Schmidt, Timothy W.; Young, Nigel A. – Journal of Chemical Education, 2013
The stretching modes of ML[subscript "x"] complexes have the same symmetry as the atomic orbitals on M that are used to form its s bonds. In the exercise suggested here, the atomic orbitals are used to derive the form of the stretching modes without the need for formal group theory. The analogy allows students to help understand many…
Descriptors: College Science, Science Instruction, Undergraduate Study, Inorganic Chemistry
Rodriguez-Fernandez, Emilio – Journal of Chemical Education, 2013
By using cardboard models that resemble propellers, the students of inorganic courses can easily visualizing the distinct rotation of optical isomers. These propellers rotate clockwise or counterclockwise when they are dropped from a certain height or in the presence of wind. (Contains 1 figure.)
Descriptors: Science Instruction, Inorganic Chemistry, Scientific Concepts, College Science
Kristian, Kathleen E. – Journal of Chemical Education, 2015
A semester-long group project that utilizes wiki sites to enhance collaboration was developed for a foundation course in inorganic chemistry. Through structured assignments, student groups use metal-based or metal-combating therapeutic agents as a model for applying and understanding course concepts; they also gain proficiency with scientific- and…
Descriptors: Inorganic Chemistry, Introductory Courses, Student Projects, Group Activities
Sattsangi, Prem D. – Journal of Chemical Education, 2014
A laboratory method for teaching inorganic qualitative analysis and chemical equations is described. The experiment has been designed to focus attention on cations and anions that react to form products. This leads to a logical approach to understand and write chemical equations. The procedure uses 3 mL plastic micropipettes to store and deliver…
Descriptors: Science Laboratories, Qualitative Research, Science Instruction, Inorganic Chemistry
Kuntzleman, Thomas Scott; Rohrer, Kristen; Schultz, Emeric – Journal of Chemical Education, 2012
Lightsticks, or glowsticks as they are sometimes called, are perhaps the chemist's quintessential toy. Because they are easy to activate and appealing to observe, experimenting with lightsticks provides a great way to get young people interested in science. Thus, we have used lightsticks to teach chemical concepts in a variety of outreach settings…
Descriptors: Inorganic Chemistry, Thermodynamics, Physics, Demonstrations (Educational)
Mattson, Bruce; Foster, Wendy; Greimann, Jaclyn; Hoette, Trisha; Le, Nhu; Mirich, Anne; Wankum, Shanna; Cabri, Ann; Reichenbacher, Claire; Schwanke, Erika – Journal of Chemical Education, 2013
The hydrogenation of alkenes by heterogeneous catalysts has been studied for 80 years. The foundational mechanism was proposed by Horiuti and Polanyi in 1934 and consists of three steps: (i) alkene adsorption on the surface of the hydrogenated metal catalyst, (ii) hydrogen migration to the beta-carbon of the alkene with formation of a delta-bond…
Descriptors: Science Instruction, College Science, Inorganic Chemistry, Undergraduate Study
Schiltz, Holly K.; Oliver-Hoyo, Maria T. – Journal of Chemical Education, 2012
Three physical model systems have been developed to help students deconstruct the visualization needed when learning symmetry and group theory. The systems provide students with physical and visual frames of reference to facilitate the complex visualization involved in symmetry concepts. The permanent reflection plane demonstration presents an…
Descriptors: Inorganic Chemistry, College Science, Science Instruction, Models
Fernandez, Alberto; Lopez-Torres, Margarita; Fernandez, Jesus J.; Vazquez-Garcia, Digna; Vila, Jose M. – Journal of Chemical Education, 2012
A laboratory experiment for students in advanced inorganic chemistry is described. Students prepare palladium(II) cyclometalated complexes. A terdentate [C,N,O] Schiff base ligand is doubly deprotonated upon reaction with palladium(II) acetate in a self-assembly process to give a palladacycle with a characteristic tetranuclear structure. This…
Descriptors: Laboratory Experiments, Inorganic Chemistry, College Science, Science Laboratories

Peer reviewed
Direct link
