Publication Date
| In 2026 | 0 |
| Since 2025 | 27 |
| Since 2022 (last 5 years) | 124 |
| Since 2017 (last 10 years) | 286 |
| Since 2007 (last 20 years) | 597 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
| Practitioners | 218 |
| Teachers | 159 |
| Students | 27 |
| Researchers | 26 |
| Administrators | 13 |
| Policymakers | 10 |
| Counselors | 1 |
Location
| South Africa | 24 |
| Spain | 19 |
| Australia | 14 |
| Canada | 12 |
| New Jersey | 8 |
| United States | 8 |
| Michigan | 7 |
| North Carolina | 7 |
| Pennsylvania | 7 |
| United Kingdom | 7 |
| Finland | 6 |
| More ▼ | |
Laws, Policies, & Programs
| Morrill Act 1862 | 1 |
| Smith Hughes Act | 1 |
Assessments and Surveys
| Approaches to Studying… | 1 |
| Inventory of Learning… | 1 |
| Learning Style Inventory | 1 |
| Myers Briggs Type Indicator | 1 |
| Study Process Questionnaire | 1 |
What Works Clearinghouse Rating
Peer reviewedRao, Y. K. – Chemical Engineering Education, 1985
The extended form of the Gibbs phase rule can be used to determine the degrees of freedom possessed by a system consisting of several species which partake in one or more chemical reactions. Discusses the use of the rule, considering the number of system components, stoichiometric/special constraints, and applications. (JN)
Descriptors: Chemical Engineering, Chemical Reactions, Engineering Education, Higher Education
Peer reviewedBell, John T. – Chemical Engineering Education (CEE), 1996
Descriptors: Chemical Engineering, Higher Education, Science Projects, Student Projects
Peer reviewedBruckner, Christian – Journal of Chemical Education, 2004
Studies in relation to the silver complexes of porphyrins, corroles and carbaporphyrins are presented especially with relation to silver in the oxidation states II and III. It is seen that the Ag(sub III) complex was electrochemically readily and reversibly reduced to the corresponding Ag(sub II) complex, thus indicating that the complex could be…
Descriptors: Chemistry, Science Education, Chemical Engineering, Inorganic Chemistry
Luyben, William L. – Chemical Engineering Education, 2007
Students frequently confuse and incorrectly apply the several "deltas" that are used in chemical engineering. The deltas come in three different flavors: "out minus in", "big minus little" and "now versus then." The first applies to a change in a stream property as the stream flows through a process. For example, the "[delta]H" in an energy…
Descriptors: Heat, Chemical Engineering, Science Instruction, Energy
Pour, Sanaz Barar; Norca, Gregory Benoit; Fradette, Louis; Legros, Robert; Tanguy, Philippe A. – Chemical Engineering Education, 2007
Solid-liquid and liquid-liquid mixing experiments have been developed to provide students with a practical experience on suspension and emulsification processes. The laboratory focuses on the characterization of the process efficiency, specifically the influence of the main operating parameters and the effect of the impeller type. (Contains 2…
Descriptors: Chemical Engineering, Science Laboratories, Science Instruction, Science Experiments
Falconer, John L. – Chemical Engineering Education, 2007
Examples of conceptests and suggestions for preparing them for use in an undergraduate, chemical engineering thermodynamics course are presented. Conceptests, combined with hand-held transmitters (clickers), is an effective method to engage students in class. This method motivates students, improves their functional understanding of…
Descriptors: Thermodynamics, Chemical Engineering, Scientific Concepts, Handheld Devices
Monroe, Charles W.; Newman, John – Chemical Engineering Education, 2007
The Onsager reciprocal relations are essential to multicomponent transport theory. A discussion of the principles that should be used to derive flux laws for coupled diffusion is presented here. Fluctuation theory is employed to determine the reciprocal relation for transport coefficients that characterize coupled mass and heat transfer in binary…
Descriptors: Heat, Graduate Students, Chemical Engineering, Computation
Metzger, Matthew J.; Glasser, Benjamin J.; Glasser, David; Hausberger, Brendon; Hildebrandt, Diane – Chemical Engineering Education, 2007
Ask a graduating chemical engineering student the following question: What makes one reactor different from the next? The answers received will often be unsatisfactory and will vary widely in scope. Some may cite the difference between the basic design equations, others may point out a PFR is "longer," and still others may state that it…
Descriptors: Graduate Students, Chemical Engineering, Equations (Mathematics), Teaching Methods
Bolton, Kim; Saalman, Elisabeth; Christie, Michael; Ingerman, Ake; Linder, Cedric – Chemistry Education Research and Practice, 2008
The publicly available free computer program, "SimChemistry," was used as an active learning tool in the chemical engineering curriculum at the University College of Boras, Sweden. The activity involved students writing their own simulation programs on topics in the area of molecular structure and interactions. Evaluation of the learning…
Descriptors: Foreign Countries, Learning Experience, Chemical Engineering, Science Curriculum
Anderson, Trisha L.; Bodner, George M. – Chemistry Education Research and Practice, 2008
This paper is based on a qualitative study of seven students enrolled in a two-semester organic chemistry course for chemistry and chemical engineering majors that focused on the reasoning the students had used to answer questions on the course exams. Narrative analysis was applied to create case records for each participant that were then…
Descriptors: Majors (Students), Case Records, Case Studies, Organic Chemistry
Madihally, Sundararajan V.; Lewis, Randy S. – Chemical Engineering Education, 2007
To enhance bioengineering in the chemical engineering curriculum, a Unit Operations experiment simulating the hemodialysis of creatinine was implemented. The blood toxin creatinine was used for developing a more realistic dialysis experiment. A dialysis model is presented that allows students to assess the validity of model assumptions. This work…
Descriptors: Feedback (Response), Chemical Engineering, Science Curriculum, Simulation
Ehrman, Sheryl H.; Castellanos, Patricia; Dwivedi, Vivek; Diemer, R. Bertrum – Chemical Engineering Education, 2007
A particle technology design problem incorporating population balance modeling was developed and assigned to senior and first-year graduate students in a Particle Science and Technology course. The problem focused on particle collection, with a pipeline agglomerator, Cyclone, and baghouse comprising the collection system. The problem was developed…
Descriptors: Chemical Engineering, Engineering Education, Graduate Students, Design
O'Connor, Kim C. – Chemical Engineering Education, 2007
Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…
Descriptors: Introductory Courses, Biotechnology, Chemical Engineering, Science Instruction
Mulimani, V. H.; Dhananjay, K. – Journal of Chemical Education, 2007
This laboratory experiment was designed to demonstrate the application of immobilized galactosidase in food industry to hydrolyze raffinose family oligosaccharides in soymilk. This laboratory experiment was conducted for postgraduate students of biochemistry and developed for graduate and undergraduate students of biochemistry, biotechnology,…
Descriptors: Undergraduate Students, Biotechnology, Biochemistry, Chemical Engineering
Perkins, Douglas M.; Bruce, David A.; Gooding, Charles H.; Butler, Justin T. – Chemical Engineering Education, 2005
A batch distillation apparatus has been designed and built for use in the undergraduate unit operations laboratory course. The column is fully automated and is accompanied by data acquisition and control software. A mixture of 1-propanol and 2-propanol is separated in the column, using either a constant distillate rate or constant composition…
Descriptors: Laboratory Equipment, Chemical Engineering, Engineering Education, Automation

Direct link
