NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 6,121 to 6,135 of 12,761 results Save | Export
Peer reviewed Peer reviewed
Smart, James R. – Mathematics Teacher, 1986
A Reuleaux triangle is an example of a curve of constant width; the distance between parallel tangents is the same no matter which direction is used. A consideration of a particular set of Reuleaux triangles is offered which leads to a good example of problem-solving in geometry. (JN)
Descriptors: Geometry, Mathematics Education, Mathematics Instruction, Problem Solving
Peer reviewed Peer reviewed
Krulik, Stephen; Rudnick, Jesse A. – Mathematics Teacher, 1985
Presents an activity for students in grades 7-10 (with ready-to-copy worksheets and overhead projector transparency masters) designed to develop the problem-solving skills of making and reading an organized list and searching for a pattern, and to provide practice in using the general heuristics of the problem-solving process. (JN)
Descriptors: Heuristics, Mathematics Education, Mathematics Instruction, Problem Solving
Peer reviewed Peer reviewed
Prevost, Fernand J. – Mathematics Teacher, 1985
Offers reasons why algebra should not be taught in the eighth grade, suggesting that this subject be replaced by a challenging, engaging alternative. Also suggests enriching the mathematics program to bring more students into mathematics classes. (JN)
Descriptors: Algebra, Grade 8, Junior High Schools, Mathematics Education
Peer reviewed Peer reviewed
Kimberling, Clark – Mathematics Teacher, 1985
Discusses Newton's method for approximating the roots of functions, indicating that students who program in BASIC can learn and appreciate the method by writing their own programs. Includes a hypothetical dialogue between teacher and student about the topic; sample program listings; and problems assigned to students who have written programs. (JN)
Descriptors: Computer Software, Functions (Mathematics), Mathematics Education, Mathematics Instruction
Peer reviewed Peer reviewed
Powell, Martin – Mathematics in School, 1985
Shows that Simpson's rule can be obtained as the average of three simple rectangular approximations and can therefore be introduced to students before they meet any calculus. In addition, the accuracy of the rule (which is for exact cubes) can be exploited to introduce the topic of integration. (JN)
Descriptors: Calculus, Computer Software, Estimation (Mathematics), Mathematics Education
Peer reviewed Peer reviewed
Kuchemann, Dietmar – Mathematics in School, 1983
Evidence was collected to support previous research findings that children prefer quantitative to formal methods of solving linear equations. They find formal methods difficult. How to help them become more receptive to learning formal methods is discussed. (MNS)
Descriptors: Algebra, Educational Research, Error Patterns, Mathematics Instruction
Peer reviewed Peer reviewed
Jones, Peter L. – Australian Mathematics Teacher, 1983
A brief review is given of some recent investigations into the use of mathematics in industry. Questionnaires and observations are each discussed plus the development of curriculum materials in several projects. (MNS)
Descriptors: Industry, Mathematical Applications, Mathematics Curriculum, Mathematics Instruction
Peer reviewed Peer reviewed
Sconyers, James M. – Mathematics Teacher, 1984
The density and Monte Carlo methods for approximating the area under a curve, without relying on calculus, are given. A computer program is included. (MNS)
Descriptors: Area, Computer Programs, Geometric Concepts, Mathematical Formulas
Peer reviewed Peer reviewed
Retzer, Kenneth A. – School Science and Mathematics, 1984
Challenges traditional use of logic in the mathematics curriculum, indicating how it may be better used. Explicit suggestions and justification for placing inferential logic in high school geometry and relegating most of the sentential logic to algebra are provided. Overviews of both forms of logic are also provided. (JN)
Descriptors: Algebra, Geometry, High Schools, Logic
Peer reviewed Peer reviewed
Roberts, William J. – Mathematics Teacher, 1984
Study and exploration of the hexagonal shapes found in honeycombs is suggested as an interesting topic for geometry classes. Students learn that the hexagonal pattern maximizes the enclosed region and minimizes the wax needed for construction, while satisfying the bees' cell-size constraint. (MNS)
Descriptors: Geometric Concepts, Geometry, Mathematical Applications, Mathematics
Peer reviewed Peer reviewed
Hornsby, E. John, Jr.; Cole, Jeffery A. – Mathematics Teacher, 1984
Methods for generating rational equations and some generalizations that can be used when writing classroom examples or test items are given. (MNS)
Descriptors: Algebra, Gifted, Mathematical Enrichment, Mathematics
Peer reviewed Peer reviewed
Parzynski, William R. – Mathematics Teacher, 1984
Described is the geometry of the antenna, particularly the reflective properties of the parabola and hyperbola, which determine the microwave path and concentrate the weak incoming energy. (MNS)
Descriptors: Geometric Concepts, Mathematical Applications, Mathematics, Mathematics Instruction
Peer reviewed Peer reviewed
Edwards, Jo – Australian Mathematics Teacher, 1984
On the Australian Mathematics Competition, boys responded correctly to more questions than did girls, but this difference came largely from a handful of questions. Responses to questions where sex differences occurred are discussed. (MNS)
Descriptors: Educational Research, Error Patterns, Mathematics Instruction, Secondary Education
Peer reviewed Peer reviewed
Kelly, Ivan W.; Bany, Bruce – School Science and Mathematics, 1984
A random arrangement of two contrasting colors in a 20x20 array is used to facilitate students' understanding of the notions of randomness, independence, and long-run frequency. It can also be used to test some prevalent errors in probabilistic reasoning. Three activities are described. (MNS)
Descriptors: Learning Activities, Mathematics Instruction, Mathematics Materials, Middle Schools
Peer reviewed Peer reviewed
Cuoco, Albert A. – Mathematics Teacher, 1985
Merit pay for teachers is discussed. The use of student performance on standardized tests as the measure of merit and the loss of cooperation among teachers are among the reasons why the author considers merit pay a poor solution for improving instruction. (MNS)
Descriptors: Editorials, Mathematics Education, Mathematics Instruction, Mathematics Teachers
Pages: 1  |  ...  |  405  |  406  |  407  |  408  |  409  |  410  |  411  |  412  |  413  |  ...  |  851