Publication Date
| In 2026 | 0 |
| Since 2025 | 27 |
| Since 2022 (last 5 years) | 124 |
| Since 2017 (last 10 years) | 286 |
| Since 2007 (last 20 years) | 597 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
| Practitioners | 218 |
| Teachers | 159 |
| Students | 27 |
| Researchers | 26 |
| Administrators | 13 |
| Policymakers | 10 |
| Counselors | 1 |
Location
| South Africa | 24 |
| Spain | 19 |
| Australia | 14 |
| Canada | 12 |
| New Jersey | 8 |
| United States | 8 |
| Michigan | 7 |
| North Carolina | 7 |
| Pennsylvania | 7 |
| United Kingdom | 7 |
| Finland | 6 |
| More ▼ | |
Laws, Policies, & Programs
| Morrill Act 1862 | 1 |
| Smith Hughes Act | 1 |
Assessments and Surveys
| Approaches to Studying… | 1 |
| Inventory of Learning… | 1 |
| Learning Style Inventory | 1 |
| Myers Briggs Type Indicator | 1 |
| Study Process Questionnaire | 1 |
What Works Clearinghouse Rating
Peer reviewedRiggs, James B. – Chemical Engineering Education, 1988
Presents a framework for model development that, when used, will help the student (or professor) avoid the major pitfalls associated with modeling. Includes not properly identifying the controlling factors, lack of model validation and developing a model that is incompatible with its end use. (CW)
Descriptors: Chemical Engineering, Chemistry, College Science, Engineering Education
Peer reviewedFleischman, Marvin – Chemical Engineering Education, 1988
Presents a philosophical commentary on the need and rationale for incorporating safety and health into the chemical engineering curriculum. Proposes safety and health assessments as useful teaching methods. Describes an approach to bringing safety and health into undergraduate engineering curricula. Gives examples of integration of these curricula…
Descriptors: Chemical Engineering, Chemistry, College Science, Engineering Education
Peer reviewedSommerfeld, Jude T. – Chemical Engineering Education, 1986
Summarizes a simple design algorithm which identifies nested loops of equations which must be solved by trial-and-error methods. The algorithm is designed to minimize such loops, provides guidance to the selection of variables, and delineates the order in which systems of equations are to be solved. Examples are included. (TW)
Descriptors: Algorithms, Chemical Engineering, College Mathematics, College Science
Peer reviewedNoble, Richard D. – Chemical Engineering Education, 1983
Use of problem-solving skills in various classroom situations are discussed. Demonstrates that the thinking level of assigned problems, type of examination questions, example-type problems in class, time factor in examinations, grading, help outside of classroom, and behavioral objectives are all areas where problem-solving skills of students can…
Descriptors: Behavioral Objectives, Chemical Engineering, Engineering Education, Grading
Peer reviewedWeinberg, Norman L. – Journal of Chemical Education, 1983
Provides a prospective on electrosynthesis technology for chemical educators and students by discussing electrosynthesis reactions and experiments. Includes tables illustrating some electrochemical products, variables to consider in electrochemical reactions, indirect electrolysis of organic compounds, examples of direct/indirect electrochemical…
Descriptors: Chemical Engineering, Chemical Reactions, Chemistry, College Science
Peer reviewedKiefer, David – Chemical and Engineering News, 1982
Conceived three years ago, the Council for Chemical Research (CCR) is meeting its goal to expedite technological transfer between universities and industry. Although funding is still a problem, membership is growing (37 industries and 128 universities). CCR encourages industrial grants to chemistry/chemical engineering departments and the Chemical…
Descriptors: Chemical Engineering, Chemistry, College Science, Engineering Education
Peer reviewedSanders, Howard J., Ed. – Chemical and Engineering News, 1982
Presents findings on employment situations for chemists and chemical engineers, focusing on: (1) comparison of chemists and chemical engineers; (2) salaries; (3) career planning; and (4) demand, indicated to be decidedly less than in previous years as a result of the deep business recession. (JN)
Descriptors: Career Planning, Chemical Engineering, Chemistry, College Science
Peer reviewedConner, Wm. Curtis, Jr. – Chemical Engineering Education, 1990
Describes the conversion of a laboratory and change in course content in a chemical engineering curriculum. Lists laboratory experiments and computer programs used in the course. Discusses difficulties during the laboratory conversion and future plans for the course. (YP)
Descriptors: Chemical Engineering, College Science, Computer Oriented Programs, Computer Software
Peer reviewedDa Silva, Francisco A.; And Others – Chemical Engineering Education, 1991
Described is a computer software package suitable for teaching and research in the area of multicomponent vapor-liquid equilibrium. This program, which has a complete database, can accomplish phase-equilibrium calculations using various models and graph the results. (KR)
Descriptors: Chemical Engineering, Chemical Equilibrium, Chemistry, College Science
Peer reviewedBiernacki, Joseph J.; Ayers, Jerry B. – Chemical Engineering Education, 2000
Reports on the experiences of 12 students--three senior undergraduates majoring in chemical engineering, five master-level, and four doctoral students--in a course titled "Interdisciplinary Studies in Multi-Scale Simulation of Concrete Materials". Course objectives focused on incorporating team-oriented interdisciplinary experiences into the…
Descriptors: Chemical Engineering, Cooperative Learning, Curriculum Design, Educational Strategies
Jorgensen, Haley – Tech Directions, 2005
This article describes a chemical-processing program at Saginaw Career Complex in Saginaw, Michigan. The program is preparing 42 11th- and 12th-graders to work as chemical-processing operators or technicians by the time they graduate from high school. It was developed in partnership with the Saginaw Career Complex--one of 51 centers in the state…
Descriptors: Technical Occupations, Chemistry, Chemical Engineering, High School Students
Eric Favre; Laurent Marchal-Heussler; Alain Durand; Noël Midoux; Christine Roizard – Chemical Engineering Education, 2005
Generally speaking, chemical engineering teaching programs at the undergraduate level focus on the continuous production of a single molecule, for which selectivity, yield, purity, as well as safety and environmental aspects are essential. Nevertheless, an increasing number of chemical engineers in Chemical Process Industries (CPI) have to face…
Descriptors: Chemical Engineering, Engineering Education, Undergraduate Students, Industry
Kentish, Sandra E.; Shallcross, David C. – Chemical Engineering Education, 2006
This paper reviews design teaching at a total of 15 chemical engineering departments across Australia, Singapore, and the United Kingdom. The emphasis is on the capstone Design Project, which can be viewed as a major transition subject for students as they move into the workplace. The study shows that this subject has evolved to act as an…
Descriptors: Foreign Countries, Comparative Education, Chemical Engineering, Science Curriculum
Joo, Yong Lak; Choudhary, Devashish – Chemical Engineering Education, 2006
For decades, every chemical engineer has been asked to have a background in separations. The required separations course can, however, be uninspiring and superficial because understanding many separation processes involves conventional graphical methods and commercial process simulators. We utilize simple, user-friendly mathematical software,…
Descriptors: Visualization, Computation, Chemical Engineering, Engineering Education
Scarbrough, Will J.; Case, Jennifer M. – Chemical Engineering Education, 2006
A new module in a first year mechanical drawing course was designed with the primary goal of exciting chemical engineering students about mechanical things. Other goals included increasing student ability and confidence to explain how things work. A variety of high intensity, hands-on, facilitated group activities using pumps and valves were…
Descriptors: Chemical Engineering, Learning Modules, Drafting, Science Process Skills

Direct link
