Publication Date
In 2025 | 3 |
Since 2024 | 15 |
Since 2021 (last 5 years) | 73 |
Since 2016 (last 10 years) | 202 |
Since 2006 (last 20 years) | 413 |
Descriptor
Source
Author
de la Torre, Jimmy | 11 |
Sinharay, Sandip | 7 |
Jiao, Hong | 6 |
Johnson, Matthew S. | 6 |
Mislevy, Robert J. | 6 |
Wang, Wen-Chung | 6 |
Cohen, Allan S. | 5 |
Douglas, Jeffrey A. | 5 |
Fox, Jean-Paul | 5 |
Griffiths, Thomas L. | 5 |
Levy, Roy | 5 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 6 |
Teachers | 5 |
Practitioners | 2 |
Students | 2 |
Location
Australia | 11 |
Taiwan | 8 |
Germany | 7 |
Italy | 5 |
North Carolina | 5 |
Turkey | 5 |
United Kingdom | 5 |
China | 4 |
Florida | 4 |
Hong Kong | 4 |
Netherlands | 4 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 1 |
Meets WWC Standards with or without Reservations | 1 |
Gardner, Josh; Brooks, Christopher; Li, Warren – Journal of Learning Analytics, 2018
In this paper, we evaluate the complete undergraduate co-enrollment network over a decade of education at a large American public university. We provide descriptive and exploratory analyses of the network, demonstrating that the co-enrollment networks evaluated follow power-law degree distributions similar to many other large-scale networks; that…
Descriptors: Markov Processes, Classification, Undergraduate Students, Grade Point Average
Pfannkuch, Maxine; Budgett, Stephanie – Journal of Statistics Education, 2016
Finding ways to enhance introductory students' understanding of probability ideas and theory is a goal of many first-year probability courses. In this article, we explore the potential of a prototype tool for Markov processes using dynamic visualizations to develop in students a deeper understanding of the equilibrium and hitting times…
Descriptors: Markov Processes, Introductory Courses, Mathematics Instruction, Probability
Rafferty, Anna N.; Brunskill, Emma; Griffiths, Thomas L.; Shafto, Patrick – Cognitive Science, 2016
Human and automated tutors attempt to choose pedagogical activities that will maximize student learning, informed by their estimates of the student's current knowledge. There has been substantial research on tracking and modeling student learning, but significantly less attention on how to plan teaching actions and how the assumed student model…
Descriptors: Markov Processes, Educational Planning, Decision Making, Models
Tissenbaum, Mike; Kumar, Vishesh; Berland, Matthew – International Educational Data Mining Society, 2016
Research has shown that supporting tinkering and exploration promotes a wide range of STEM related literacies. However, the open-endedness of tinkering environments makes it difficult to know whether learners' exploration is productive or not. This is especially true in museum spaces, where dwell times are short and facilitators lack a history of…
Descriptors: Museums, Exhibits, Behavior, Markov Processes
Quintana, Rafael – Sociological Methods & Research, 2023
Causal search algorithms have been effectively applied in different fields including biology, genetics, climate science, medicine, and neuroscience. However, there have been scant applications of these methods in social and behavioral sciences. This article provides an illustrative example of how causal search algorithms can shed light on…
Descriptors: Academic Achievement, Causal Models, Algorithms, Social Problems
Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus – IEEE Transactions on Learning Technologies, 2017
Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…
Descriptors: Bayesian Statistics, Models, Intelligent Tutoring Systems, Networks
Feng, Xiang-Nan; Wu, Hao-Tian; Song, Xin-Yuan – Sociological Methods & Research, 2017
We consider an ordinal regression model with latent variables to investigate the effects of observable and latent explanatory variables on the ordinal responses of interest. Each latent variable is characterized by correlated observed variables through a confirmatory factor analysis model. We develop a Bayesian adaptive lasso procedure to conduct…
Descriptors: Bayesian Statistics, Regression (Statistics), Models, Observation
Donadello, Ivan; Spoto, Andrea; Sambo, Francesco; Badaloni, Silvana; Granziol, Umberto; Vidotto, Giulio – Educational and Psychological Measurement, 2017
The clinical assessment of mental disorders can be a time-consuming and error-prone procedure, consisting of a sequence of diagnostic hypothesis formulation and testing aimed at restricting the set of plausible diagnoses for the patient. In this article, we propose a novel computerized system for the adaptive testing of psychological disorders.…
Descriptors: Adaptive Testing, Mental Disorders, Computer Assisted Testing, Psychological Evaluation
Silva, R. M.; Guan, Y.; Swartz, T. B. – Journal on Efficiency and Responsibility in Education and Science, 2017
This paper attempts to bridge the gap between classical test theory and item response theory. It is demonstrated that the familiar and popular statistics used in classical test theory can be translated into a Bayesian framework where all of the advantages of the Bayesian paradigm can be realized. In particular, prior opinion can be introduced and…
Descriptors: Item Response Theory, Bayesian Statistics, Test Construction, Markov Processes
Yildiz, Mustafa – ProQuest LLC, 2017
Student misconceptions have been studied for decades from a curricular/instructional perspective and from the assessment/test level perspective. Numerous misconception assessment tools have been developed in order to measure students' misconceptions relative to the correct content. Often, these tools are used to make a variety of educational…
Descriptors: Misconceptions, Students, Item Response Theory, Models
Mi, Fei; Faltings, Boi – International Educational Data Mining Society, 2017
Massive open online courses (MOOCs) have demonstrated growing popularity and rapid development in recent years. Discussion forums have become crucial components for students and instructors to widely exchange ideas and propagate knowledge. It is important to recommend helpful information from forums to students for the benefit of the learning…
Descriptors: Online Courses, Sequential Approach, Discussion Groups, Student Interests
Foster, Colin; Martin, David – Teaching Statistics: An International Journal for Teachers, 2016
We analyse the "two-dice horse race" task often used in lower secondary school, in which two ordinary dice are thrown repeatedly and each time the sum of the scores determines which horse (numbered 1 to 12) moves forwards one space.
Descriptors: Statistics, Markov Processes, Probability, Statistical Significance
Zhang, Zhiyong – Grantee Submission, 2016
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Descriptors: Bayesian Statistics, Models, Statistical Distributions, Computation
Luo, Yong; Jiao, Hong – Educational and Psychological Measurement, 2018
Stan is a new Bayesian statistical software program that implements the powerful and efficient Hamiltonian Monte Carlo (HMC) algorithm. To date there is not a source that systematically provides Stan code for various item response theory (IRT) models. This article provides Stan code for three representative IRT models, including the…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Computer Software
Wang, Shiyu; Zhang, Susu; Douglas, Jeff; Culpepper, Steven – Measurement: Interdisciplinary Research and Perspectives, 2018
Analyzing students' growth remains an important topic in educational research. Most recently, Diagnostic Classification Models (DCMs) have been used to track skill acquisition in a longitudinal fashion, with the purpose to provide an estimate of students' learning trajectories in terms of the change of fine-grained skills overtime. Response time…
Descriptors: Reaction Time, Markov Processes, Computer Assisted Instruction, Spatial Ability