NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 151 to 165 of 2,743 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Abdelmadjid Benmachiche; Abdelhadi Sahia; Soundes Oumaima Boufaida; Khadija Rais; Makhlouf Derdour; Faiz Maazouzi – Education and Information Technologies, 2025
In the context of massive open online courses (MOOCs), searching and retrieving information can be challenging because there is a huge amount of unstructured content, which creates a problem and makes it difficult for users to quickly find relevant lessons or resources. As a result, learners and teachers face significant barriers to accessing the…
Descriptors: MOOCs, Natural Language Processing, Artificial Intelligence, Search Engines
Peer reviewed Peer reviewed
Direct linkDirect link
Agus Santoso; Heri Retnawati; Kartianom; Ezi Apino; Ibnu Rafi; Munaya Nikma Rosyada – Open Education Studies, 2024
The world's move to a global economy has an impact on the high rate of student academic failure. Higher education, as the affected party, is considered crucial in reducing student academic failure. This study aims to construct a prediction (predictive model) that can forecast students' time to graduation in developing countries such as Indonesia,…
Descriptors: Time to Degree, Open Universities, Foreign Countries, Predictive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Sandra Wankmüller – Sociological Methods & Research, 2024
Transformer-based models for transfer learning have the potential to achieve high prediction accuracies on text-based supervised learning tasks with relatively few training data instances. These models are thus likely to benefit social scientists that seek to have as accurate as possible text-based measures, but only have limited resources for…
Descriptors: Social Science Research, Transfer of Training, Natural Language Processing, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Pavel Stefanovic; Birute Pliuskuviene; Urte Radvilaite; Simona Ramanauskaite – Education and Information Technologies, 2024
The public availability of large language models, such as chatGPT, brings additional possibilities and challenges to education. Education institutions have to identify when large language models are used and when text is generated by the student itself. In this paper, chatGPT usage in students' answers is investigated. The main aim of the research…
Descriptors: Artificial Intelligence, Questioning Techniques, Computer Software, Synchronous Communication
Zixuan Ke – ProQuest LLC, 2024
The essence of human intelligence lies in its ability to learn continuously, accumulating past knowledge to aid in future learning and problem-solving endeavors. In contrast, the current machine learning paradigm often operates in isolation, lacking the capacity for continual learning and adaptation. This deficiency becomes apparent in the face of…
Descriptors: Computational Linguistics, Computer Software, Barriers, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Pasty Asamoah; John Serbe Marfo; Matilda Kokui Owusu-Bio; Ivy Maame Efua Hinson; Robert Doe; Daniel Zokpe – Africa Education Review, 2024
Academic integrity fosters a culture of honesty, trust, and respect within the educational community. Evidence indicates that manual plagiarism checks through human judgment remain prevalent in undergraduate theses, terminal assignments, and group projects in developing countries. To fill this gap, we engaged with students and staff of the Kwame…
Descriptors: Foreign Countries, Undergraduate Study, Plagiarism, Writing (Composition)
Peer reviewed Peer reviewed
Direct linkDirect link
Franz Classe; Christoph Kern – Educational and Psychological Measurement, 2024
We develop a "latent variable forest" (LV Forest) algorithm for the estimation of latent variable scores with one or more latent variables. LV Forest estimates unbiased latent variable scores based on "confirmatory factor analysis" (CFA) models with ordinal and/or numerical response variables. Through parametric model…
Descriptors: Algorithms, Item Response Theory, Artificial Intelligence, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Sijia Huang; Seungwon Chung; Carl F. Falk – Journal of Educational Measurement, 2024
In this study, we introduced a cross-classified multidimensional nominal response model (CC-MNRM) to account for various response styles (RS) in the presence of cross-classified data. The proposed model allows slopes to vary across items and can explore impacts of observed covariates on latent constructs. We applied a recently developed variant of…
Descriptors: Response Style (Tests), Classification, Data, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Mohammed Saqr; Sonsoles López-Pernas – Smart Learning Environments, 2024
In learning analytics and in education at large, AI explanations are always computed from aggregate data of all the students to offer the "average" picture. Whereas the average may work for most students, it does not reflect or capture the individual differences or the variability among students. Therefore, instance-level…
Descriptors: Artificial Intelligence, Decision Making, Predictor Variables, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Suleyman Alpaslan Sulak; Nigmet Koklu – European Journal of Education, 2024
This study employs advanced data mining techniques to investigate the DASS-42 questionnaire, a widely used psychological assessment tool. Administered to 680 students at Necmettin Erbakan University's Ahmet Kelesoglu Faculty of Education, the DASS-42 comprises three distinct subscales--depression, anxiety and stress--each consisting of 14 items.…
Descriptors: Foreign Countries, Algorithms, Information Retrieval, Data Analysis
Michael Wade Ashby – ProQuest LLC, 2024
Whether machine learning algorithms effectively predict college students' course outcomes using learning management system data is unknown. Identifying students who will have a poor outcome can help institutions plan future budgets and allocate resources to create interventions for underachieving students. Therefore, knowing the effectiveness of…
Descriptors: Artificial Intelligence, Algorithms, Prediction, Learning Management Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Eva Portelance; Michael C. Frank; Dan Jurafsky – Cognitive Science, 2024
Interpreting a seemingly simple function word like "or," "behind," or "more" can require logical, numerical, and relational reasoning. How are such words learned by children? Prior acquisition theories have often relied on positing a foundation of innate knowledge. Yet recent neural-network-based visual question…
Descriptors: Vocabulary, Grammar, Visual Aids, Language Acquisition
Peer reviewed Peer reviewed
Direct linkDirect link
Sijia Huang; Dubravka Svetina Valdivia – Educational and Psychological Measurement, 2024
Identifying items with differential item functioning (DIF) in an assessment is a crucial step for achieving equitable measurement. One critical issue that has not been fully addressed with existing studies is how DIF items can be detected when data are multilevel. In the present study, we introduced a Lord's Wald X[superscript 2] test-based…
Descriptors: Item Analysis, Item Response Theory, Algorithms, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Eeshan Hasan; Erik Duhaime; Jennifer S. Trueblood – Cognitive Research: Principles and Implications, 2024
A crucial bottleneck in medical artificial intelligence (AI) is high-quality labeled medical datasets. In this paper, we test a large variety of wisdom of the crowd algorithms to label medical images that were initially classified by individuals recruited through an app-based platform. Individuals classified skin lesions from the International…
Descriptors: Algorithms, Human Body, Classification, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Bin Tan; Hao-Yue Jin; Maria Cutumisu – Computer Science Education, 2024
Background and Context: Computational thinking (CT) has been increasingly added to K-12 curricula, prompting teachers to grade more and more CT artifacts. This has led to a rise in automated CT assessment tools. Objective: This study examines the scope and characteristics of publications that use machine learning (ML) approaches to assess…
Descriptors: Computation, Thinking Skills, Artificial Intelligence, Student Evaluation
Pages: 1  |  ...  |  7  |  8  |  9  |  10  |  11  |  12  |  13  |  14  |  15  |  ...  |  183