NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Does not meet standards4
Showing 196 to 210 of 1,110 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ruiz Reyes, Karen; Contreras Garcia, Jose Miguel – Statistics Education Research Journal, 2021
In statistical inference, importance of sampling is recognized as one of its key concepts, which has allowed its incorporation internationally in different curricular guidelines and specifically in the Chilean curriculum, since the first notions of sampling are introduced in 7th Grade. This paper presents an analysis of the responses to an…
Descriptors: Sampling, Secondary School Students, Statistical Inference, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Lujie Karen; Ramsey, Joseph; Dubrawski, Artur – Journal of Educational Data Mining, 2021
Human one-on-one coaching involves complex multimodal interactions. Successful coaching requires teachers to closely monitor students' cognitive-affective states and provide support of optimal type, timing, and amount. However, most of the existing human tutoring studies focus primarily on verbal interactions and have yet to incorporate the rich…
Descriptors: Causal Models, Coaching (Performance), Statistical Analysis, Correlation
Xue Zhang; Chun Wang – Grantee Submission, 2021
Among current state-of-art estimation methods for multilevel IRT models, the two-stage divide-and-conquer strategy has practical advantages, such as clearer definition of factors, convenience for secondary data analysis, convenience for model calibration and fit evaluation, and avoidance of improper solutions. However, various studies have shown…
Descriptors: Error of Measurement, Error Correction, Item Response Theory, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lyu, Weicong; Kim, Jee-Seon; Suk, Youmi – Journal of Educational and Behavioral Statistics, 2023
This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and…
Descriptors: Hierarchical Linear Modeling, Bayesian Statistics, Causal Models, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Hayden, Robert W. – Journal of Statistics Education, 2019
Recent years have seen increasing interest in incorporating resampling methods into introductory statistics courses and the high school mathematics curriculum. While the use of permutation tests for data from experiments is a step forward, the use of simple bootstrap methods for sampling situations is more problematical. This article demonstrates…
Descriptors: Sampling, Statistical Inference, Introductory Courses, College Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Shi, Yongren; Cameron, Christopher J.; Heckathorn, Douglas D. – Sociological Methods & Research, 2019
Respondent-driven sampling (RDS), a link-tracing sampling and inference method for studying hard-to-reach populations, has been shown to produce asymptotically unbiased population estimates when its assumptions are satisfied. However, some of the assumptions are prohibitively difficult to reach in the field, and the violation of a crucial…
Descriptors: Statistical Inference, Bias, Recruitment, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Hao, Jiangang; Ho, Tin Kam – Journal of Educational and Behavioral Statistics, 2019
Machine learning is a popular topic in data analysis and modeling. Many different machine learning algorithms have been developed and implemented in a variety of programming languages over the past 20 years. In this article, we first provide an overview of machine learning and clarify its difference from statistical inference. Then, we review…
Descriptors: Artificial Intelligence, Statistical Inference, Data Analysis, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Edelsbrunner, Peter A.; Dablander, Fabian – Educational Psychology Review, 2019
Psychometric modeling has become a frequently used statistical tool in research on scientific reasoning. We review psychometric modeling practices in this field, including model choice, model testing, and researchers' inferences based on their psychometric practices. A review of 11 empirical research studies reveals that the predominant…
Descriptors: Psychometrics, Science Process Skills, Item Response Theory, Educational Assessment
Peng Ding; Luke W. Miratrix – Grantee Submission, 2019
For binary experimental data, we discuss randomization-based inferential procedures that do not need to invoke any modeling assumptions. We also introduce methods for likelihood and Bayesian inference based solely on the physical randomization without any hypothetical super population assumptions about the potential outcomes. These estimators have…
Descriptors: Causal Models, Statistical Inference, Randomized Controlled Trials, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Çibik, Naz Fulya; Boz-Yaman, Burçak – Science Activities: Projects and Curriculum Ideas in STEM Classrooms, 2022
The purpose of this paper is to integrate mathematical modeling and ecology by presenting an activity involving an authentic environmental problem, which is called "Pine Processionary Caterpillars Invasion." Adopting Mathematical Modeling and Education for Climate Action (EfCA) approaches, it was aimed to encourage pre-service teachers…
Descriptors: Mathematical Models, Ecology, Climate, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Deke, John; Finucane, Mariel; Thal, Daniel – National Center for Education Evaluation and Regional Assistance, 2022
BASIE is a framework for interpreting impact estimates from evaluations. It is an alternative to null hypothesis significance testing. This guide walks researchers through the key steps of applying BASIE, including selecting prior evidence, reporting impact estimates, interpreting impact estimates, and conducting sensitivity analyses. The guide…
Descriptors: Bayesian Statistics, Educational Research, Data Interpretation, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Howington, Eric B. – Teaching Statistics: An International Journal for Teachers, 2017
Few introductory statistics courses consider statistical inference for the median. This article argues in favour of adding a confidence interval for the median to the first statistics course. Several methods suitable for introductory statistics students are identified and briefly reviewed.
Descriptors: Statistics, Intervals, Statistical Inference, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Hancock, Stacey A.; Rummerfield, Wendy – Journal of Statistics Education, 2020
Sampling distributions are fundamental to an understanding of statistical inference, yet research shows that students in introductory statistics courses tend to have multiple misconceptions of this important concept. A common instructional method used to address these misconceptions is computer simulation, often preceded by hands-on simulation…
Descriptors: Teaching Methods, Sampling, Experiential Learning, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Keller, Bryan – Journal of Educational and Behavioral Statistics, 2020
Widespread availability of rich educational databases facilitates the use of conditioning strategies to estimate causal effects with nonexperimental data. With dozens, hundreds, or more potential predictors, variable selection can be useful for practical reasons related to communicating results and for statistical reasons related to improving the…
Descriptors: Nonparametric Statistics, Computation, Testing, Causal Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mansolf, Maxwell; Jorgensen, Terrence D.; Enders, Craig K. – Grantee Submission, 2020
Structural equation modeling (SEM) applications routinely employ a trilogy of significance tests that includes the likelihood ratio test, Wald test, and score test or modification index. Researchers use these tests to assess global model fit, evaluate whether individual estimates differ from zero, and identify potential sources of local misfit,…
Descriptors: Structural Equation Models, Computation, Scores, Simulation
Pages: 1  |  ...  |  10  |  11  |  12  |  13  |  14  |  15  |  16  |  17  |  18  |  ...  |  74