NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 241 to 255 of 2,728 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
da Silva, Felipe Leite; Slodkowski, Bruna Kin; da Silva, Ketia Kellen Araújo; Cazella, Sílvio César – Education and Information Technologies, 2023
Recommender systems have become one of the main tools for personalized content filtering in the educational domain. Those who support teaching and learning activities, particularly, have gained increasing attention in the past years. This growing interest has motivated the emergence of new approaches and models in the field, in spite of it, there…
Descriptors: Literature Reviews, Artificial Intelligence, Educational Research, Trend Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Buczak, Philip; Huang, He; Forthmann, Boris; Doebler, Philipp – Journal of Creative Behavior, 2023
Traditionally, researchers employ human raters for scoring responses to creative thinking tasks. Apart from the associated costs this approach entails two potential risks. First, human raters can be subjective in their scoring behavior (inter-rater-variance). Second, individual raters are prone to inconsistent scoring patterns…
Descriptors: Computer Assisted Testing, Scoring, Automation, Creative Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Scruggs, Richard; Baker, Ryan S.; Pavlik, Philip I., Jr.; McLaren, Bruce M.; Liu, Ziyang – Educational Technology Research and Development, 2023
Despite considerable advances in knowledge tracing algorithms, educational technologies that use this technology typically continue to use older algorithms, such as Bayesian Knowledge Tracing. One key reason for this is that contemporary knowledge tracing algorithms primarily infer next-problem correctness in the learning system, but do not…
Descriptors: Algorithms, Prediction, Knowledge Level, Video Games
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pargman, Teresa Cerratto; McGrath, Cormac; Viberg, Olga; Knight, Simon – Journal of Learning Analytics, 2023
The focus of ethics in learning analytics (LA) frameworks and guidelines is predominantly on procedural elements of data management and accountability. Another, less represented focus is on the duty to act and LA as a moral practice. Data feminism as a critical theoretical approach to data science practices may offer LA research and practitioners…
Descriptors: Learning Analytics, Responsibility, Feminism, Ethics
Peer reviewed Peer reviewed
Direct linkDirect link
Ning, Xiaoke – International Journal of Web-Based Learning and Teaching Technologies, 2023
With the vigorous development of intelligent campus construction, great changes have taken place in the development of information technology in colleges and universities from the previous digital to intelligent development. In the teaching process, the analysis of students' classroom learning has also changed from the previous manual observation…
Descriptors: College Students, Algorithms, Student Behavior, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Farrow, Robert – Learning, Media and Technology, 2023
Explicable AI in education (XAIED) has been proposed as a way to improve trust and ethical practice in algorithmic education. Based on a critical review of the literature, this paper argues that XAI should be understood as part of a wider socio-technical turn in AI. The socio-technical perspective indicates that explicability is a relative term.…
Descriptors: Artificial Intelligence, Algorithms, Computer Uses in Education, Language Usage
Peer reviewed Peer reviewed
Direct linkDirect link
Tan, Qingrong; Cai, Yan; Luo, Fen; Tu, Dongbo – Journal of Educational and Behavioral Statistics, 2023
To improve the calibration accuracy and calibration efficiency of cognitive diagnostic computerized adaptive testing (CD-CAT) for new items and, ultimately, contribute to the widespread application of CD-CAT in practice, the current article proposed a Gini-based online calibration method that can simultaneously calibrate the Q-matrix and item…
Descriptors: Cognitive Tests, Computer Assisted Testing, Adaptive Testing, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Aloisi, Cesare – European Journal of Education, 2023
This article considers the challenges of using artificial intelligence (AI) and machine learning (ML) to assist high-stakes standardised assessment. It focuses on the detrimental effect that even state-of-the-art AI and ML systems could have on the validity of national exams of secondary education, and how lower validity would negatively affect…
Descriptors: Standardized Tests, Test Validity, Credibility, Algorithms
Peer reviewed Peer reviewed
PDF on ERIC Download full text
García-Orosa, Berta; Canavilhas, João; Vázquez-Herrero, Jorge – Comunicar: Media Education Research Journal, 2023
The influence of algorithms on society is increasing due to their growing presence in all areas of daily life. Although we are not always aware of it, they sometimes usurp the identity of other social actors. The main purpose of this article is to address the meta-research on the field of artificial intelligence and communication from a holistic…
Descriptors: Algorithms, Artificial Intelligence, Communications, Holistic Approach
Peer reviewed Peer reviewed
Direct linkDirect link
Thompson, Terrie Lynn; Prinsloo, Paul – Learning, Media and Technology, 2023
Learning analytics offer centralization of a particular understanding of learning, teaching, and student support alongside data-informed insight and foresight. As such, student-related data in higher education can be imagined and enacted as a 'data frontier' in which the data gaze is expanding, intensifying, and performing new meanings and…
Descriptors: Learning Analytics, Data, Activism, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Jin, Cong – Interactive Learning Environments, 2023
Since the advent of massive open online courses (MOOC), it has been the focus of educators and learners around the world, however the high dropout rate of MOOC has had a serious negative impact on its popularity and promotion. How to effectively predict students' dropout status in MOOC for early intervention has become a hot topic in MOOC…
Descriptors: MOOCs, Potential Dropouts, Prediction, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lonneke Boels; Alex Lyford; Arthur Bakker; Paul Drijvers – Frontline Learning Research, 2023
Many students persistently misinterpret histograms. Literature suggests that having students solve dotplot items may prepare for interpreting histograms, as interpreting dotplots can help students realize that the statistical variable is presented on the horizontal axis. In this study, we explore a special case of this suggestion, namely, how…
Descriptors: Data Interpretation, Interpretive Skills, Statistical Distributions, Graphs
Amel Awadelkarim – ProQuest LLC, 2023
With the rise in popularity of social media and e-commerce platforms, "discrete math" is at the heart of our online experiences, playing a front-end role in the recommendation of what to click, watch, or buy, or who to follow or friend, as well as a back-end role in data storage, access, and transfer. This thesis focuses on two such…
Descriptors: Algorithms, Mathematical Models, Statistics, Mathematical Applications
Peer reviewed Peer reviewed
Direct linkDirect link
Hongxi Li; Shuwei Li; Liuquan Sun; Xinyuan Song – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Structural equation models offer a valuable tool for delineating the complicated interrelationships among multiple variables, including observed and latent variables. Over the last few decades, structural equation models have successfully analyzed complete and right-censored survival data, exemplified by wide applications in psychological, social,…
Descriptors: Statistical Analysis, Statistical Studies, Structural Equation Models, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Hadis Anahideh; Nazanin Nezami; Abolfazl Asudeh – Grantee Submission, 2025
It is of critical importance to be aware of the historical discrimination embedded in the data and to consider a fairness measure to reduce bias throughout the predictive modeling pipeline. Given various notions of fairness defined in the literature, investigating the correlation and interaction among metrics is vital for addressing unfairness.…
Descriptors: Correlation, Measurement Techniques, Guidelines, Semantics
Pages: 1  |  ...  |  13  |  14  |  15  |  16  |  17  |  18  |  19  |  20  |  21  |  ...  |  182