NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20011
Showing 331 to 345 of 503 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Bartolucci, Francesco; Solis-Trapala, Ivonne L. – Psychometrika, 2010
We demonstrate the use of a multidimensional extension of the latent Markov model to analyse data from studies with repeated binary responses in developmental psychology. In particular, we consider an experiment based on a battery of tests which was administered to pre-school children, at three time periods, in order to measure their inhibitory…
Descriptors: Markov Processes, Developmental Psychology, Item Response Theory, Inhibition
Peer reviewed Peer reviewed
Direct linkDirect link
Sanborn, Adam N.; Griffiths, Thomas L.; Shiffrin, Richard M. – Cognitive Psychology, 2010
A key challenge for cognitive psychology is the investigation of mental representations, such as object categories, subjective probabilities, choice utilities, and memory traces. In many cases, these representations can be expressed as a non-negative function defined over a set of objects. We present a behavioral method for estimating these…
Descriptors: Markov Processes, Multidimensional Scaling, Cognitive Psychology, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Cohen, Andrew L.; Ross, Michael G. – Journal of Experimental Psychology: Human Perception and Performance, 2009
Several previous studies have examined the ability to judge the relative mass of objects in idealized collisions. With a newly developed technique of psychological Markov chain Monte Carlo sampling (A. N. Sanborn & T. L. Griffiths, 2008), this work explores participants; perceptions of different collision mass ratios. The results reveal…
Descriptors: Markov Processes, Monte Carlo Methods, Sampling, Perception
Peer reviewed Peer reviewed
Direct linkDirect link
Goldsmith, John; Xanthos, Aris – Language, 2009
This article describes in detail several explicit computational methods for approaching such questions in phonology as the vowel/consonant distinction, the nature of vowel harmony systems, and syllable structure, appealing solely to distributional information. Beginning with the vowel/consonant distinction, we consider a method for its discovery…
Descriptors: Syllables, Vowels, Nouns, Phonology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
O'Connor, Erin E.; McCormick, Meghan P.; Cappella, Elise; McClowry, Sandee G. – Society for Research on Educational Effectiveness, 2014
Not all children begin kindergarten ready to learn. Young children who exhibit dysregulated or disruptive behavior in the classroom have fewer opportunities to learn and consequently achieve lower levels of academic skills (Arnold et al., 2006; Raver, Garner, & Smith-Donald, 2007). A growing body of literature has examined how children's…
Descriptors: Young Children, Behavior Problems, Student Behavior, At Risk Students
Peer reviewed Peer reviewed
Direct linkDirect link
Boyer, Kristy Elizabeth; Phillips, Robert; Ingram, Amy; Ha, Eun Young; Wallis, Michael; Vouk, Mladen; Lester, James – International Journal of Artificial Intelligence in Education, 2011
Identifying effective tutorial dialogue strategies is a key issue for intelligent tutoring systems research. Human-human tutoring offers a valuable model for identifying effective tutorial strategies, but extracting them is a challenge because of the richness of human dialogue. This article addresses that challenge through a machine learning…
Descriptors: Markov Processes, Intelligent Tutoring Systems, Tutoring, Program Effectiveness
Peer reviewed Peer reviewed
Direct linkDirect link
Browne, William; Goldstein, Harvey – Journal of Educational and Behavioral Statistics, 2010
In this article, we discuss the effect of removing the independence assumptions between the residuals in two-level random effect models. We first consider removing the independence between the Level 2 residuals and instead assume that the vector of all residuals at the cluster level follows a general multivariate normal distribution. We…
Descriptors: Computation, Sampling, Markov Processes, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Granberg-Rademacker, J. Scott – Educational and Psychological Measurement, 2010
The extensive use of survey instruments in the social sciences has long created debate and concern about validity of outcomes, especially among instruments that gather ordinal-level data. Ordinal-level survey measurement of concepts that could be measured at the interval or ratio level produce errors because respondents are forced to truncate or…
Descriptors: Intervals, Rating Scales, Surveys, Markov Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mercier, Julien – World Journal of Education, 2012
A cognitive model of how teachers plan instruction was validated in laboratory settings but remained to be tested empirically in authentic situations. The objective of this work is to describe and compare pedagogical reasoning in laboratory and authentic contexts and across expertise levels. The "state-driven hypothesis" and the…
Descriptors: Planning, Lesson Plans, Laboratories, Expertise
Peer reviewed Peer reviewed
Direct linkDirect link
Iliopoulos, G.; Kateri, M.; Ntzoufras, I. – Psychometrika, 2009
Association models constitute an attractive alternative to the usual log-linear models for modeling the dependence between classification variables. They impose special structure on the underlying association by assigning scores on the levels of each classification variable, which can be fixed or parametric. Under the general row-column (RC)…
Descriptors: Markov Processes, Classification, Bayesian Statistics, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Bolfarine, Heleno; Bazan, Jorge Luis – Journal of Educational and Behavioral Statistics, 2010
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…
Descriptors: Markov Processes, Item Response Theory, Bayesian Statistics, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Edwards, Michael C. – Psychometrika, 2010
Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show…
Descriptors: Structural Equation Models, Markov Processes, Factor Analysis, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Hsieh, Chueh-An; von Eye, Alexander A.; Maier, Kimberly S. – Multivariate Behavioral Research, 2010
The application of multidimensional item response theory models to repeated observations has demonstrated great promise in developmental research. It allows researchers to take into consideration both the characteristics of item response and measurement error in longitudinal trajectory analysis, which improves the reliability and validity of the…
Descriptors: Item Response Theory, Change, Adolescents, Social Isolation
Peer reviewed Peer reviewed
Direct linkDirect link
Erickson, Keith – PRIMUS, 2010
The material in this module introduces students to some of the mathematical tools used to examine molecular evolution. This topic is standard fare in many mathematical biology or bioinformatics classes, but could also be suitable for classes in linear algebra or probability. While coursework in matrix algebra, Markov processes, Monte Carlo…
Descriptors: Monte Carlo Methods, Markov Processes, Biology, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Okada, Kensuke; Shigemasu, Kazuo – Applied Psychological Measurement, 2009
Bayesian multidimensional scaling (MDS) has attracted a great deal of attention because: (1) it provides a better fit than do classical MDS and ALSCAL; (2) it provides estimation errors of the distances; and (3) the Bayesian dimension selection criterion, MDSIC, provides a direct indication of optimal dimensionality. However, Bayesian MDS is not…
Descriptors: Bayesian Statistics, Multidimensional Scaling, Computation, Computer Software
Pages: 1  |  ...  |  19  |  20  |  21  |  22  |  23  |  24  |  25  |  26  |  27  |  ...  |  34