Publication Date
| In 2026 | 0 |
| Since 2025 | 288 |
| Since 2022 (last 5 years) | 1856 |
| Since 2017 (last 10 years) | 5345 |
| Since 2007 (last 20 years) | 10800 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
| Practitioners | 2446 |
| Teachers | 2338 |
| Researchers | 320 |
| Students | 249 |
| Administrators | 76 |
| Policymakers | 71 |
| Parents | 15 |
| Community | 5 |
| Counselors | 5 |
| Media Staff | 2 |
Location
| Turkey | 445 |
| Australia | 292 |
| United Kingdom (Great Britain) | 268 |
| Indonesia | 252 |
| United Kingdom | 248 |
| United Kingdom (England) | 213 |
| Germany | 203 |
| Canada | 179 |
| China | 171 |
| Sweden | 129 |
| United States | 115 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards without Reservations | 1 |
| Meets WWC Standards with or without Reservations | 2 |
| Does not meet standards | 1 |
Gates, Joshua – Physics Teacher, 2014
Newton's second law is one of the cornerstones of the introductory physics curriculum, but it can still trouble a large number of students well after its introduction, hobbling their ability to apply the concept to problem solving and to related concepts, such as momentum, circular motion, and orbits. While there are several possibilities for…
Descriptors: Science Experiments, Scientific Principles, Scientific Concepts, Science Education
Lane, W. Brian – Physics Teacher, 2014
The traditional introductory-level meterstick-balancing lab assumes that students already know what torque is and that they readily identify it as a physical quantity of interest. We propose a modified version of this activity in which students qualitatively and quantitatively measure the amount of force required to keep the meterstick level. The…
Descriptors: Introductory Courses, Science Education, Educational Practices, Teaching Methods
Holmes, N. G.; Day, James; Park, Anthony H. K.; Bonn, D. A.; Roll, Ido – Instructional Science: An International Journal of the Learning Sciences, 2014
Invention activities are Productive Failure activities in which students attempt (and often fail) to invent methods that capture deep properties of a construct before being taught expert solutions. The current study evaluates the effect of scaffolding on the invention processes and outcomes, given that students are not expected to succeed in their…
Descriptors: Failure, Scaffolding (Teaching Technique), Inquiry, Active Learning
Ding, Lin – Physical Review Special Topics - Physics Education Research, 2014
Discipline-based science concept assessments are powerful tools to measure learners' disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA) has been broadly used to gauge student conceptions of key electricity and magnetism (E&M) topics in college-level introductory physics courses.…
Descriptors: Scientific Concepts, Science Tests, College Science, Physics
Oliveira, V. – Physics Education, 2014
We compare the period of oscillation of an ideal simple pendulum with the period of a more "real" pendulum constituted of a rigid sphere and a rigid slender rod. We determine the relative error in the calculation of the local acceleration of gravity if the period of the ideal pendulum is used instead of the period of this real pendulum.
Descriptors: Science Instruction, Physics, Scientific Principles, Motion
Corrao, Christian T. – Physics Teacher, 2014
A challenge: Can you create a stable top from a single paper clip? Several interesting solutions to this problem were provided by Takao Sakai from Japan, the requirement of each being that the center of gravity be located on the vertical y-axis at the center of the top. In the simplest configuration, we see that there exists a single angle ?…
Descriptors: Science Instruction, Physics, Science Activities, Scientific Concepts
El Abed, Mohamed – Physics Teacher, 2014
By superimposing two sound waves of the same wavelength, propagating in the opposite direction, we can create an intensity pattern having a characteristic scale equal to half a wavelength: it is the diffraction limit. Recently a group from the Institut Laue-Langevin in Paris has shown that it is possible to go beyond this limit by focusing sound…
Descriptors: Acoustics, Fundamental Concepts, Physics, Scientific Concepts
Kuhn, Jochen; Vogt, Patrik; Hirth, Michael – Physics Teacher, 2014
In this column, we have previously presented various examples of how physical relationships can be examined by analyzing acoustic signals using smartphones or tablet PCs. In this example, we will be exploring the acoustic phenomenon of small beats, which is produced by the overlapping of two tones with a low difference in frequency ?f. The…
Descriptors: Acoustics, Handheld Devices, Auditory Discrimination, Technology Uses in Education
Haglund, Jesper; Jeppsson, Fredrik – Science & Education, 2014
Use of self-generated analogies has been proposed as a method for students to learn about a new subject by reference to what they previously know, in line with a constructivist perspective on learning and a resource perspective on conceptual change. We report on a group exercise on using completion problems in combination with self-generated…
Descriptors: Teaching Methods, Group Activities, Thermodynamics, Science Instruction
Agrawal. D. C. – Physics Education, 2014
Human beings consume energy every day. Even at rest, energy is still needed for the working of the internal organs. This is achieved by the metabolism of consumed food in the presence of inhaled oxygen. During the resting state this is called the maintenance rate, and follows the mouse-to-elephant formula, P[subscript met] = 70M[superscript 0.75]…
Descriptors: Human Body, Metabolism, Energy, Food
White, Susan; Tyler, John – AIP Statistical Research Center, 2014
During the 2012-13 academic year, the authors collected data from a representative national sample of over 3,500 public and private high schools across the U.S. to inquire about physics availabilities and offerings. This report describes their findings.
Descriptors: Physics, Secondary School Teachers, High Schools, National Surveys
Mansyur, Jusman; Darsikin – International Education Studies, 2016
This paper describes an instructional design for introductory physics that integrates previous research results of physics problem-solving and the use of external representation into direct instruction (DI). The research is a part of research in obtaining an established instructional design to support mental-modeling ability. By integrating with…
Descriptors: Direct Instruction, Introductory Courses, Physics, Cognitive Ability
Taslidere, Erdal – Research in Science & Technological Education, 2016
Background: In the last few decades, researchers have turned their attention to students' understanding of scientific concepts at different school levels. The results indicate that the learners have different ideas, and most of them are inaccurate in terms of those generally accepted by the scientific community. Purpose: This study was undertaken…
Descriptors: Diagnostic Tests, Student Evaluation, High School Students, Misconceptions
Gambari, Isiaka Amosa; Yusuf, Mudasiru Olalere – Contemporary Educational Technology, 2016
This study investigated the effects of computer-assisted Jigsaw II cooperative strategy on physics achievement and retention. The study also determined how moderating variables of achievement levels as it affects students' performance in physics when Jigsaw II cooperative learning is used as an instructional strategy. Purposive sampling technique…
Descriptors: Computer Assisted Instruction, Educational Technology, Cooperative Learning, Physics
Li, Xuesong; Van Wie, Bernard J. – Journal of STEM Education: Innovations and Research, 2016
The difficulty in covering chemical engineering concepts using traditional lectures and whiteboard teaching approaches means today's students' learning demands are unfulfilled, so alternate methods are needed. Desktop learning modules (DLMs) are designed to show industrial fluid flow and heat transfer concepts in a standard classroom so students…
Descriptors: Heat, Mechanics (Physics), Chemical Engineering, Experimental Groups

Peer reviewed
Direct link
