Publication Date
| In 2026 | 1 |
| Since 2025 | 373 |
| Since 2022 (last 5 years) | 1880 |
| Since 2017 (last 10 years) | 4431 |
| Since 2007 (last 20 years) | 8006 |
Descriptor
Source
Author
| Fuchs, Lynn S. | 68 |
| Verschaffel, Lieven | 41 |
| Fuchs, Douglas | 32 |
| Powell, Sarah R. | 32 |
| Sarama, Julie | 31 |
| Clarke, Ben | 30 |
| Ben Clarke | 25 |
| Clements, Douglas H. | 25 |
| Desoete, Annemie | 25 |
| Siegler, Robert S. | 23 |
| Torbeyns, Joke | 23 |
| More ▼ | |
Publication Type
Education Level
Audience
| Teachers | 1417 |
| Practitioners | 1248 |
| Researchers | 278 |
| Students | 170 |
| Policymakers | 126 |
| Administrators | 82 |
| Parents | 72 |
| Community | 18 |
| Counselors | 17 |
| Media Staff | 3 |
| Support Staff | 2 |
| More ▼ | |
Location
| Australia | 419 |
| Turkey | 334 |
| Indonesia | 292 |
| California | 160 |
| Germany | 151 |
| Canada | 149 |
| United Kingdom | 146 |
| South Africa | 125 |
| United States | 124 |
| Finland | 115 |
| United Kingdom (England) | 113 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards without Reservations | 34 |
| Meets WWC Standards with or without Reservations | 46 |
| Does not meet standards | 25 |
Peer reviewedTrafton, Paul R.; Zawojewski, Judith S. – Arithmetic Teacher, 1990
The concepts of number sense and numeration, operations, and whole-number computations and their importance are discussed. Activities cover developing concepts of operations, exploring patterns and relationships, and building an understanding of mathematical structure. (KR)
Descriptors: Computation, Elementary Education, Elementary School Mathematics, Learning Activities
Bitter, Gary G.; Hatfield, Mary M. – Executive Educator, 1991
A 2-year project helped Supai Middle Schools (grades 7-8; enrollment 600) in Scottsdale, Arizona, explore ways to use calculators as tools for learning and teaching mathematics. This project and other research indicate that students at every grade level can use calculators in classes to understand mathematical concepts. (MLF)
Descriptors: Calculators, Elementary Secondary Education, Inservice Teacher Education, Instructional Innovation
Peer reviewedPhillips, Gary W.; Finn, Chester E., Jr. – Educational Leadership, 1990
In 1992, the National Assessment of Educational Progress will assess math skills at fourth- and eighth-grade levels and reading skills among fourth graders. For the first time, the process will be designed to compare states. The historical background, rationale, and expected benefits of this new approach are summarized. Includes six references.…
Descriptors: Educational Policy, Educational Quality, Elementary Secondary Education, Mathematics Skills
Peer reviewedBaroody, Arthur J.; Gatzke, Mary R. – Journal for Research in Mathematics Education, 1991
Explored is young children's ability to estimate set sizes and use reference points such as 10. Results indicated that many children could accurately place sets somewhat smaller than a reference point but had difficulty placing sets somewhat larger than a reference point. (CW)
Descriptors: Arithmetic, Cognitive Development, Cognitive Structures, Elementary School Mathematics
Peer reviewedHungerford, Thomas W. – American Mathematical Monthly, 1990
Presented is a example that shows why a certain technical lemma is necessary for a valid proof of Galois Theory. The usual proof of Galois' Theory is included as well as one using the lemma. (KR)
Descriptors: Algebra, College Mathematics, Higher Education, Learning Activities
Peer reviewedFolland, G. B. – American Mathematical Monthly, 1990
Presented is an alternate way to derive R from Taylor's Theorem without involving the (n + 1)st derivative of f. Included is the procedure for estimating the bounds of R. (KR)
Descriptors: Calculus, College Mathematics, Equations (Mathematics), Higher Education
Peer reviewedHickerson, Dean; And Others – American Mathematical Monthly, 1990
Developed is a condition, expressed in terms of an index, that ensures that a quasinormal subgroup is normal. The arguments suggest a variety of exercises for a course in group theory or Galois theory. Included are the definitions, lemmas, and proofs. (KR)
Descriptors: College Mathematics, Geometry, Higher Education, Instructional Materials
Peer reviewedCurjel, C. R. – American Mathematical Monthly, 1990
Presented are activities that help students understand the idea of a vector field. Included are definitions, flow lines, tangential and normal components along curves, flux and work, field conservation, and differential equations. (KR)
Descriptors: Calculus, College Mathematics, Higher Education, Instructional Materials
Peer reviewedTuttle, Jerome E. – Mathematics Teacher, 1990
Discussed are some applications of mathematics involved in actuarial science which may be taught in high school mathematics classes. Described are the importance of approximate solutions, multiple answers, and selling the solution to a problem. (CW)
Descriptors: Creative Thinking, Learning Strategies, Mathematical Applications, Mathematics Curriculum
Peer reviewedVest, Floyd; Griffith, Reynolds – Journal of Computers in Mathematics and Science Teaching, 1989
This article presents 12 examples of the use of a calculator in the algebra class. The calculator codes and the mathematical formulas of the examples are presented in the appendix. (Author/YP)
Descriptors: Algebra, Calculators, Computation, Mathematical Applications
Peer reviewedMalone, Jim – Mathematics Teacher, 1989
Describes four laboratory activities in algebra and precalculus classes that provide hands-on experiences related to functions: slowing down the acceleration of gravity; calculating the acceleration of gravity; generating a parabola using a steel ball and a tilted board; and photographing projectile motion. (YP)
Descriptors: Functions (Mathematics), Graphs, Mathematical Applications, Mathematical Concepts
Peer reviewedHazlewood, Donald G.; And Others – Arithmetic Teacher, 1989
Describes how Suzuki's methods of teaching young pupils to play the violin can be combined with Polya's ideas on problem solving to teach mathematics to elementary school pupils. Six references are listed. (YP)
Descriptors: Algebra, Elementary Education, Elementary School Mathematics, Mathematical Applications
Pothier, Yvonne; Sawada, Daiyo – Focus on Learning Problems in Mathematics, 1989
The focus of this article is on the verification processes children use when assessing the equality of parts produced by them when partitioning geometric shapes. Different processes and children's verbal proofs of equality are presented. Activities for mathematics instruction are suggested. (YP)
Descriptors: Concept Formation, Elementary Education, Elementary School Mathematics, Fractions
Peer reviewedScott, Paul – Australian Mathematics Teacher, 1988
Discusses the use of computer graphics in the teaching of geometry. Describes five types of geometry: Euclidean geometry, transformation geometry, coordinate geometry, three-dimensional geometry, and geometry of convex sets. (YP)
Descriptors: Computer Assisted Instruction, Computer Graphics, Computer Uses in Education, Geometry
Peer reviewedBebout, Harriett C. – Journal for Research in Mathematics Education, 1990
Investigated whether children who reflected the structure of word problems with their concrete models were successful in learning to symbolically represent problems with structure-based open number sentences. Forty-five first graders were taught to write canonical and noncanonical open number sentences. (Author/YP)
Descriptors: Addition, Arithmetic, Elementary Education, Elementary School Mathematics


