Publication Date
| In 2026 | 0 |
| Since 2025 | 27 |
| Since 2022 (last 5 years) | 177 |
| Since 2017 (last 10 years) | 412 |
| Since 2007 (last 20 years) | 873 |
Descriptor
Source
Author
| Griffiths, Thomas L. | 10 |
| Bakker, Arthur | 8 |
| Ben-Zvi, Dani | 8 |
| Gelman, Andrew | 8 |
| Makar, Katie | 8 |
| Mislevy, Robert J. | 7 |
| Pfannkuch, Maxine | 7 |
| Qinyun Lin | 7 |
| Wagenmakers, Eric-Jan | 7 |
| Kenneth A. Frank | 6 |
| Tenenbaum, Joshua B. | 6 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 35 |
| Teachers | 31 |
| Practitioners | 15 |
| Administrators | 3 |
| Students | 3 |
| Media Staff | 1 |
| Parents | 1 |
| Policymakers | 1 |
Location
| Australia | 23 |
| Turkey | 13 |
| California | 9 |
| Canada | 8 |
| Malaysia | 8 |
| Netherlands | 8 |
| Texas | 8 |
| United States | 8 |
| United Kingdom (England) | 7 |
| Indonesia | 6 |
| New Zealand | 6 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 3 |
| Aid to Families with… | 1 |
| Head Start | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Does not meet standards | 4 |
Çibik, Naz Fulya; Boz-Yaman, Burçak – Science Activities: Projects and Curriculum Ideas in STEM Classrooms, 2022
The purpose of this paper is to integrate mathematical modeling and ecology by presenting an activity involving an authentic environmental problem, which is called "Pine Processionary Caterpillars Invasion." Adopting Mathematical Modeling and Education for Climate Action (EfCA) approaches, it was aimed to encourage pre-service teachers…
Descriptors: Mathematical Models, Ecology, Climate, Problem Solving
Deke, John; Finucane, Mariel; Thal, Daniel – National Center for Education Evaluation and Regional Assistance, 2022
BASIE is a framework for interpreting impact estimates from evaluations. It is an alternative to null hypothesis significance testing. This guide walks researchers through the key steps of applying BASIE, including selecting prior evidence, reporting impact estimates, interpreting impact estimates, and conducting sensitivity analyses. The guide…
Descriptors: Bayesian Statistics, Educational Research, Data Interpretation, Hypothesis Testing
Hayden, Robert W. – Journal of Statistics Education, 2019
Recent years have seen increasing interest in incorporating resampling methods into introductory statistics courses and the high school mathematics curriculum. While the use of permutation tests for data from experiments is a step forward, the use of simple bootstrap methods for sampling situations is more problematical. This article demonstrates…
Descriptors: Sampling, Statistical Inference, Introductory Courses, College Mathematics
Shi, Yongren; Cameron, Christopher J.; Heckathorn, Douglas D. – Sociological Methods & Research, 2019
Respondent-driven sampling (RDS), a link-tracing sampling and inference method for studying hard-to-reach populations, has been shown to produce asymptotically unbiased population estimates when its assumptions are satisfied. However, some of the assumptions are prohibitively difficult to reach in the field, and the violation of a crucial…
Descriptors: Statistical Inference, Bias, Recruitment, Sampling
Hao, Jiangang; Ho, Tin Kam – Journal of Educational and Behavioral Statistics, 2019
Machine learning is a popular topic in data analysis and modeling. Many different machine learning algorithms have been developed and implemented in a variety of programming languages over the past 20 years. In this article, we first provide an overview of machine learning and clarify its difference from statistical inference. Then, we review…
Descriptors: Artificial Intelligence, Statistical Inference, Data Analysis, Programming Languages
Edelsbrunner, Peter A.; Dablander, Fabian – Educational Psychology Review, 2019
Psychometric modeling has become a frequently used statistical tool in research on scientific reasoning. We review psychometric modeling practices in this field, including model choice, model testing, and researchers' inferences based on their psychometric practices. A review of 11 empirical research studies reveals that the predominant…
Descriptors: Psychometrics, Science Process Skills, Item Response Theory, Educational Assessment
Peng Ding; Luke W. Miratrix – Grantee Submission, 2019
For binary experimental data, we discuss randomization-based inferential procedures that do not need to invoke any modeling assumptions. We also introduce methods for likelihood and Bayesian inference based solely on the physical randomization without any hypothetical super population assumptions about the potential outcomes. These estimators have…
Descriptors: Causal Models, Statistical Inference, Randomized Controlled Trials, Bayesian Statistics
Wang, Xiaoqing; Wu, Haotian; Feng, Xiangnan; Song, Xinyuan – Sociological Methods & Research, 2021
Given the questionnaire design and the nature of the problem, partially ordered data that are neither completely ordered nor completely unordered are frequently encountered in social, behavioral, and medical studies. However, early developments in partially ordered data analysis are very limited and restricted only to cross-sectional data. In this…
Descriptors: Bayesian Statistics, Health Behavior, Smoking, Case Studies
Hancock, Stacey A.; Rummerfield, Wendy – Journal of Statistics Education, 2020
Sampling distributions are fundamental to an understanding of statistical inference, yet research shows that students in introductory statistics courses tend to have multiple misconceptions of this important concept. A common instructional method used to address these misconceptions is computer simulation, often preceded by hands-on simulation…
Descriptors: Teaching Methods, Sampling, Experiential Learning, Computer Simulation
Keller, Bryan – Journal of Educational and Behavioral Statistics, 2020
Widespread availability of rich educational databases facilitates the use of conditioning strategies to estimate causal effects with nonexperimental data. With dozens, hundreds, or more potential predictors, variable selection can be useful for practical reasons related to communicating results and for statistical reasons related to improving the…
Descriptors: Nonparametric Statistics, Computation, Testing, Causal Models
Mansolf, Maxwell; Jorgensen, Terrence D.; Enders, Craig K. – Grantee Submission, 2020
Structural equation modeling (SEM) applications routinely employ a trilogy of significance tests that includes the likelihood ratio test, Wald test, and score test or modification index. Researchers use these tests to assess global model fit, evaluate whether individual estimates differ from zero, and identify potential sources of local misfit,…
Descriptors: Structural Equation Models, Computation, Scores, Simulation
Howington, Eric B. – Teaching Statistics: An International Journal for Teachers, 2017
Few introductory statistics courses consider statistical inference for the median. This article argues in favour of adding a confidence interval for the median to the first statistics course. Several methods suitable for introductory statistics students are identified and briefly reviewed.
Descriptors: Statistics, Intervals, Statistical Inference, Introductory Courses
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Annenberg Institute for School Reform at Brown University, 2024
Analyzing heterogeneous treatment effects (HTE) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and pre-intervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Makar, Katie; Allmond, Sue – ZDM: The International Journal on Mathematics Education, 2018
Children have limited exposure to statistical concepts and processes, yet researchers have highlighted multiple benefits of experiences in which they design and/or engage informally with statistical modelling. A study was conducted with a classroom in which students developed and utilised data-based models to respond to the inquiry question,…
Descriptors: Statistics, Mathematical Models, Prediction, Statistical Distributions
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems

Peer reviewed
Direct link
